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Abstract

A new method for orbit prediction, which is as accurate as numerical methods and as fast

as analytical methods, in terms of computational time, is desirable. This paper presents

Kolmogorov Arnol’d Moser (KAM) torus orbit prediction using Simplified General Per-

turbations 4 (SGP4) and Two-Line Element (TLE) data. First, a periodic orbit and its

Floquet solution are calculated. After that, perturbations, which are on the order of 10−5

and smaller, are added to the periodic orbit plus Floquet solution. Then, the low eccentric-

ity KAM torus is least squares fitted to the SGP4 and TLE data. The performance of the

theory is presented in various ways. The new method is approximately five times more ac-

curate for the best fits and three times more accurate for mean fits comparing to SGP4 and

TLE. History of TLEs and KAM torus theory can be used to make accurate orbit predic-

tions, which is conceptually similar to extrapolation. In addition, the new method may rival

numerical methods and it can be used for collision avoidance calculations, and formation

flight applications. However, high eccentricity, polar and critical inclination, air drag, and

resonance problems should be addressed.
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KAM TORUS ORBIT PREDICTION FROM TWO LINE ELEMENT SETS

I. Introduction

Artificial satellites are indispensable parts of the daily lives of people. Both civilian and

military world depend on satellites orbiting Earth at very high speeds. There are many ap-

plications of satellites such as communication, navigation, Earth observation, and weather.

The position of a satellite should be known within a certain limit to establish communi-

cation between ground stations and the satellite. The accurate positions of satellites and

debris are important for collision avoidance purposes. Orbit determination methods yield

the position of a satellite at a given time in the future.

1.1 Motivation and Background

Bright moving objects in the sky have intrigued mankind since ancient history began.

Ancient people worshiped heavenly bodies as Gods. They developed timekeeping systems

to facilitate their daily lives. They used stars to navigate in deserts and seas. They made

observations to figure out the motion of celestial bodies. It was Johannes Kepler who

first developed the three laws of planetary motion in 1619. Kepler’s empirical findings,

based on Tycho Brahe’s planetary observations, were explained by Isaac Newton in his

book “Principia” in 1687. Isaac Newton used his three laws of motion to derive Kepler’s

laws of planetary motion. Kepler’s equations serve as a complete solution to the two-

body problem (2BP), which determines the mutual gravitational interaction of two bodies

under the assumption that there is no third body affecting them. The solution to the 2BP

assumes that there is no perturbing force affecting the two body motion. The formulation

of the three-body problem (3BP) was provided by Joseph Louis Lagrange in 1772. The

1



3BP is a special case of the n-body problem (NBP). It is the problem of calculating mutual

gravitational interaction of three bodies.

At the end of the 18th century, remarkable advances occured in perturbation theory due

to the logarithms invented by John Napier in 1614 and the efforts in modeling the Earth’s

gravitational field. Perturbations can be defined as the divergence from the normal motion.

The motion of a body under the influence of small accelerations diverges from the two

body motion. There are three different methods to find perturbations to the two body mo-

tion: special perturbation techniques, general perturbation techniques, and semianalytical

techniques. Special perturbation techniques rely on numerical integration techiques and re-

quire high computational power. Numerical integration methods provide orbit predictions

with a level of accuracy in meters. General perturbation techniques make use of analyt-

ical solutions to the perturbation problem and do not require much computational power.

However, predictions made by general perturbation techniques are not as accurate as that of

numerical methods. Semianalytical techniques combine special and general perturbation

techniques to compensate for their disadvantages [60].

Precise orbit prediction is of great importance in the space age. Accurate positions

of operational satellites help us to communicate with them. Antennas are useless if they

are not pointing to the right direction, unless they are omnidirectional. Nonoperational

satellites and debris pose threats to operational satellites. Accurate orbit estimation is very

important for collision avoidance because wrong maneuver decisions cannot only result

in the loss of millions of dollars but also create thousands of pieces of debris. Moreover,

accurate predictions for the reentry of returning space objects are very important for two

reasons. First, space objects returning from space might pose threats to people. Second,

space assets returning from space might contain hardware or software important to the

national security. Therefore, U.S. Space Surveillance Network (SSN) detects, tracks, and

catalogs debris, operational and nonoperational satellites every day. SSN has more than
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23,000 objects orbiting Earth in its database. [54].

North American Aerospace Defense Command (NORAD) publishes Two-Line Ele-

ment (TLE) sets of some satellites to promote situational awareness in space. Special

General Perturbations 4 (SGP4) is the current method of NORAD to propagate orbits from

raw observational data coming from radars. However, SGP4 is accurate in the vicinity of

epoch time. SGP4 is based on general perturbation techniques. Therefore, it suffers from

errors that emerge from omission of higher order terms in the equations of motions, and its

predictions are accurate only in kilometers. SGP4 requires observational data to make cor-

rections once every few days. However, it is very fast in terms of computation time. Special

perturbation techniques are used if more accurate predictions are needed. For example, the

success of a collision avoidance intrinsically depends on accuracy in the positions of ob-

jects in danger of collision. The downsides of numerical integration methods are truncation

errors in the long run due to the limited word length of computers, high computational cost,

and difficulty in determining whether the resultant orbit is the one that is desired. More-

over, the breakup of satellite 1961-Omicron in 1961 proved that heavily dependence on

numerical methods that requires high computational power for the sake of accuracy is not

reliable. In 1961, the breakup tripled the number of debris to be tracked. The Naval Ordi-

nance Research Calculator (NORC), which was at the Naval Weapon’s Laboratory (NWL)

in Dahlgren, was insufficient to cope with the surveillance data flow and the orbital up-

dates. Recently acquired IBM 7090, which was three times faster than NORC in terms of

computational power, and incredible human effort processed the data in a few days. That

catastrophic event has been second to none since then. However, lessons were well learned.

It is crucial to have accurate orbit determination models that don’t require as much compu-

tational power as special perturbation techniques [26]. Therefore, a new method for orbit

prediction, which is as accurate as numerical methods and as fast as analytical methods, in

terms of computational time, would be very desirable.
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1.2 Problem Statement

This work will answer the question of whether best low eccentricity Kolmogorov Arnold

Moser (KAM) tori fitted to the orbits, using TLE histories of satellites, produce more accu-

rate predictions for low eccentricity orbits than SGP4 does. Moreover, this effort presents

an approximate accuracy analysis for the low KAM torus orbit prediction because both

SGP4 and TLE suffer from intrinsic inaccuracies. The actual accuracy that can be achieved

by this theory can be analyzed using raw observational data.

A previous study by Frey showed that it is possible to extract KAM torus basis fre-

quencies from SGP4 and TLE sets. Frey concluded that low eccentricities of Hubble Space

Telescope (HST) and Thor Rocket Body caused difficulties in the construction process of

KAM torus, and the difficulties in the TLE curve fitting for the two Delta Rocket Bod-

ies are due to air drag. Frey used a modified Laskar frequency algorithm, developed by

Wiesel, to determine KAM torus basis frequencies [28]. Laskar fequency analysis is used

to determine the stability of orbits in dynamical systems where the energy is conserved.

Because the modified Laskar frequency algorithm cannot model low eccentricity orbits

to the desired degree of accuracy, Wiesel developed a new theory for low eccentricity Earth

satellite motion to construct KAM torus. This work will make use of this new theory to

build KAM torus for low eccentricity orbits. This KAM torus construction method includes

geopotential, order and degree 20, and air drag perturbations[69].

1.3 Approach

This effort uses three different main programs to prove KAM torus orbit prediction

from TLE sets provides more accurate predictions in the long run than SGP4 and TLE sets.

The first main program is a public domain SGP4 program written in C++ by Vallado [61].

It outputs predicted positions and velocities for an orbit period and some orbital elements

by making use of TLE sets of satellites. TLE sets of satellites with low eccentricities are
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obtained from www.space-track.org once every 3 to 4 days for a period of 2 months. NO-

RAD imports corrections to SGP4 predictions with observational data coming from radars

once every 3 to 4 days. The second main program, developed by Wiesel, builds a low ec-

centricity KAM torus including zonal, sectoral, and tesseral geopotential perturbations, and

air drag perturbations. The third main program is a least squares fitting program that fits

a low eccentricity KAM torus to SGP4 and TLE data by iteratively correcting modal vari-

ables, which are KAM torus coordinates and their linearizations, and basis frequencies of

the KAM torus, and subsequently outputs residual mean square values. The methodology

is based on the concept, which is very similar to that of the least squares method, that it is

possible to obtain more accurate results with more data, and SGP4 is more accurate when

nearer to the epoch time. The author has developed some scripts to analyze all low eccen-

tricity satellites, which have eccentricities smaller than 10−2, and inclinations not close to

critical and polar inclination. There are 7,938 satellites and pieces of debris correspond

with the above description, which can be publicly obtained from www.space-track.org.

However, the author has pseudo-randomly chosen 1500 of these 7,398 near-Earth objects

as his test cases. This effort serves as a prelude to converting the TLE sets catalog from

SGP4 to low eccentricity KAM torus theory.

1.4 Results

This effort proves that the low eccentricity KAM theory is a better substitute for SGP4.

The new theory is five times more accurate for the best fits, and three times better for mean

fits. Most of the low eccentricity orbits of the near-Earth objects can be modeled by the low

eccentricity KAM torus method. However, resonance, higher eccentricity, polar and critical

inclinations, and air drag issues should be addressed. The results are certainly promising.

Specifically, the new method can be used for collision avoidance calculations, and forma-

tion flight applications. The new method provides with a set of numerical algorithms that
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may rival the numerical methods in accuracy and the analytic methods in computational

speed. This work also presents a rigorous performance analysis of the theory, which will

be hopefully used as a reference for future studies.

1.5 Overview

This document is organized in five chapters. Chapter II will present previous studies

conducted by Wiesel and his masters and PhD students on KAM torus orbit determination.

It will also give an overview of the history of analytical orbit modeling in the United States

space surveillance system, satellite dynamics formulated in Hamiltonian mechanics, KAM

theory, the geopotential and air drag as perturbing forces, and least squares fitting. Chapter

III will discuss the methodology and the data to be analyzed. It will also outline predicting

positions and velocities from TLE and SGP4, building low eccentricity KAM tori, and

fitting the low eccentricity KAM tori to the orbits obtained from SGP4 and TLE. Chapter IV

will present the results and limitations of KAM torus orbit prediction method. It will also

compare the accuracy of the new method to that of SGP4 and TLE. A general summary of

the work, conclusions, and recommendations for future studies will be presented in Chapter

V.
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II. Background

This chapter provides background information on current orbit determination methods,

near-Earth satellite motion, and KAM theory. First, a brief history of analytical orbit mod-

eling in the United States Space Surveillance System is presented. Then, the importance of

the space situational awareness is presented. Next, Hamiltonian mechanics, transformation

theory, orbit perturbations, and KAM theory are described. Then, the application of KAM

theory to celestial mechanics is presented. After that, the previous studies of Wiesel and

his masters and PhD students on the applications of KAM theory to Earth satellites are

provided in chronological order. Finally, a summary of this chapter will be given.

2.1 A Brief History of Analytical Orbit Modeling

After the launch of Sputnik in 1957, United States started to track space objects. Today,

SSN database has more than 23,000 space objects orbiting earth [54]. Earth orbiting objects

are cataloged by analytical orbit models. The analytical methods have been mostly devel-

oped by the Air Force Space Command and the Naval Space Command. The development

and improvement of orbital models and algorithms span from 1957 to today [26].

The necessity of knowing orbital positions of space objects emerged due to military

concerns in 1957. The Air Force used it not to confuse a missile with an object orbiting

Earth, and the Navy used it to warn the fleets against space reconnaissance. The potential

benefits from artificial satellites led to great interest in the accurate positions of the satellites

for the civilian world. Therefore, the catalog for Earth orbiting objects was created, and it

is still in use today [26].

The first formal catalog was created at the National Space Surveillance Control Center

(NSSCC). The control center was located in Bedford, Massachusetts. The observational

data were provided by 150 different sites. There were 4 different types of observations,
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which were categorized by their source and content. Table 1 shows details of different

observational data types used from the year 1957 to 1963 [26].

Table 1. Observational Data Types [26]

Observation Type Content Source
Type 1 2 angles and slant range Radars

Type 2 2 angles
Baker-Nunn cameras,
telescopes, binoculars,
visual sightings

Type 3 Azimuth Direction finders

Type 4 Time of closest approach (Doppler)
Radars, radio receivers
(for transmitting satellites)

Observations were processed by an IBM-709 computer to update orbital elements in

the catalog, which were some type of mean orbital elements. Then, updated orbital data

were processed by another program to yield three different products, which were used to

make observations for the next time by ground sites. The first product, called bulletin, was

the precursor of the TLE sets. The most important components of a bulletin were longi-

tude, time of ascending pass, and revolution number of a satellite. These were generated

approximately a week in advance. The second product was used to calculate all satellite

passes, which could be seen from an observing site. The third product was very similar

to the second product. However, the third one was used by the U.S. Navy and U.S. Army

observation fences, which were composed of a number of radars. Therefore, the third prod-

uct was used to yield the intersection point of orbital plane of a satellite and vertical plane

spanned by radar beam instead of some look angles and ranges [26].

In 1961, U.S. Navy constructed the Naval Space Surveillance System (NAVSPASUR),

which detected and cataloged Earth orbiting objects mostly without human intervention.

The processing unit for NAVSPASUR was located at Dahlgren, Virginia. The system was

a continuous wave multi-static interferometer, which observed LEO satellites 4 to 6 times a

day. There were 3 transmitters and 6 receivers, which spanned from San Diego, California
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to Savannah, Georgia as 9 individual sites located in the Southern States. The system

was called “Fence”. The command of the Fence, which was responsible for 40% of all

observations made by the Air Force, was passed to U.S. Air Force in 2004. The U.S. Air

Force shut down the system in October 2013. A new fence is planned to be operational in

2017 in the Marshall Islands [19].

Special perturbation techniques were thought to be used in the Fence until it was dis-

covered that it took the NORC at the NWL several hours to update one orbit. In 1961,

the catalog was transferred to an IBM-7090 computer, which reduced the time required

to update one orbit to approximately 1 minute. That was very promising for the imple-

mentation of highly numerical methods, which yield more accurate predictions. However,

the breakup of 1961-Omicron tripled the number of objects to be tracked. The number

of detectable objects exceeded the capability of the NORC. The IBM-7090 and incredible

human effort processed the data in a few days. Although special perturbation techniques

provide with more accurate predictions, the beakup of satellite 1961-Omicron proved that

accurate analytical models are needed in case computers fail to process the data [26].

In 1959, Dirk Brouwer and Yoshide Kozai provided two different solutions to the same

problem, which was Earth satellite motion under the influence of the zonal harmonics J2,

J3, J4, and J5 [9, 38]. Modern orbit prediction methods used in the U.S. Space Surveillance

System include fundementals of the solutions provided by Brouwer and Kozai. In 1961,

Brouwer and Gen-Ichiro Hori added atmospheric drag effect to the 1959 Brouwer solution

[10]. However, the atmospheric model was computationally heavy for the computers of

the time due to the series expansions in the scale height. In 1960, a group of people under

the project SPACETRACK developed an atmospheric density modeling, which solved the

series expansion problem for artificial satellites. Max Lane developed an analytic orbit

model based on the atmospheric density modeling of the SPACETRACK in 1965 [40].

Lane and Cranford improved the analytic orbit model by implementing analytic density
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model instead of empirical one in 1969 [42]. In 1963, Lyddane contributed to the analytic

orbit modeling by solving small divisors of the eccentricity and sine of the inclination

by defining the perturbation theory in terms of Poincaré variables instead of Delaunay

variables [49].

Conversion from theory to practice for analytical orbit models took place in Dahlgren,

Virginia, and Colorado Springs, Colorado. NAVSPASUR implemented the 1959 Brouwer

solution with Lyddane’s contribution, which was known as PPT (Position and Partials as a

function of Time), on an IBM-7090 computer in 1964. PPT adopted semi-empirical drag

model developed by Richard H. Smith because the atmospheric model of Brouwer and Hori

was computationally heavy for the computers of the time, and it was too early for the Lane’s

analytic orbit model. The change in the eccentricity could be solved using Equation 1 and

Equation 2.

ėo = eo(1− eo
2)

ȧo

ao
(1)

ȧo =−
4
3

ao

no
(
ȧo

2
) (2)

Numerically, mean motion term in PPT is similar to Kozai’s mean motion, which has the

zonal secular perturbation rate of mean anomaly drived by Brouwer.

NSSCC was moved to Colorado Springs, and named as Space Detection and Tracking

System (SPADATS). SPADATS is the other location for the implementation of the ana-

lytic orbital theory, which was called SGP (Simplified General Perturbations), developed

by Brouwer and Kozai. Arsenault, Chaffee, and Kuhlman avoided small divisors of the

eccentricity and sine of the inclination in SGP by defining the solution in non-singular

terms and keeping only the most important ones in the model. They included long and

short-period terms without the eccentricity effect from the Brouwer solution and the con-
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vention that relates mean motion to semi-major axis from the Kozai solution [33]. The air

drag effect used in SGP was very similar to Smith’s semi-empirical model. In 1969, Lane

and Cranford developed an analytic atmospheric model for artificial satellites [42]. How-

ever, computers of the time were inadequate to cope with calculations required for the new

model. Therefore, the most important terms of the atmospheric model were implemented

to the analytical orbit model, which is now called SGP4. Today, some flavor of SGP4 is

used by NORAD [26].

Solar and Lunar gravitation, and resonance in the tesseral harmonics of Earth became

important when the first satellite with a period of 12 hours was launched in 1965. Bruce

Bowman developed a model which includes third body effects, and resonance in the tesseral

harmonics of Earth in 1967 [7]. In 1977, Dick Hujsak developed another model which in-

cludes everything from Bowman’s work. Moreover, his first-order model could be applied

to geosynchronous satellites [32]. Hujsak’s model was combined with the SGP4 model,

which is still in use today. In 1997, third body effects, and resonance in the tesseral har-

monics of Earth were adopted from SGP4 by the Naval Space Command. The new method,

which is still in use today, is called PPT3 [26].

2.2 Space Situational Awareness

In less than six years from the launch of Sputnik 1 to 1963, 616 man-made objects

accumulated in low Earth orbit (LEO). Those man-made objects were 76 payloads, 35

rocket bodies, and 227 mission related debris. The U.S. Ablestar upper stage explosion

created 184 pieces of objects which were half of all the objects cataloged by SSN in 1963,

and 60% of all debris from this explosion is still orbiting Earth [54]. Today, 23,000 objects

are cataloged by SSN and the majority of these objects are not operational satellites but

debris and nonoperational satellites, which is approximately 95% of total number of objects

being cataloged [59].
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Figure 1. Cataloged objects by SSN in 1963 (left) and in 2013 (right) [54]

The rate of growth in the number of debri objects in less than six years was noticed

by Ernest Peterkin, Head of the Systems Section of the Operational Research Branch at

the U.S. Naval Research Laboratory. He was one of the first to calculate the number of

objects per unit volume in LEO in February 1963. He derived population growth functions

for the objects in LEO using estimates for launch rates, lifetimes of satellites, and satellite

collisions. Peterkin’s conclusions showed that there would be 16,500 objects in LEO at

the beginning of 2013. His predictions are very close to the number of objects cataloged

by SSN on 1 January 2013. Peterkin concluded that space surveillance systems would

have difficulty coping with the rapid growth in the number of objects orbiting Earth in

the future. He stated that it is important to improve detection and data processing methods

used in space surveillance systems to manage the increase in the number of objects orbiting

Earth [54]. This effort is trying to find an accurate and a fast orbit prediction method

which can help space surveillance systems to cope with the proliferation of objects orbiting

Earth. Low eccentricity KAM theory yields more accurate orbit predictions than SGP4. In

addition, this work shows that it is possible to extract valuable data, which are used by the

low eccentricity KAM torus orbit prediction method to make corrections to low eccentricity

KAM tori, from inaccurate TLEs in the long run.

The Joint Space Operations Center (JSpOC), located at Vandenberg, is responsible for

detecting, tracking, and cataloging all man-made objects orbiting Earth. JSpOC uses SSN

which has 30 space surveillance radars and optical telescopes all over the world. The radar
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Figure 2. Worldwide network of space surveillance sensors of SSN [55]

sensors are dedicated to make observations for near-Earth objects, which are below 6000

kilometers altitude. The electro-optic sensors are dedicated to make observations for deep-

space objects, which are above 6000 kilometers altitude. Azimuth, elevation, range, and

range rate are typical observation types obtained from a radar site. Azimuth and elevation

or right ascension and declination are observations provided by an optical sensor. Observa-

tions made by SSN include time tags [37]. Figure 2 shows locations of worldwide network

of 30 space surveillance sensors. Observational data obtained by these sensors are fitted to

the trajectories of orbiting objects, and the satellite catalog is continuously updated. SSN

makes 380,000 to 420,000 observations every day. SSN implements a predictive surveil-

lance method because all objects orbiting Earth cannot be covered by existing sensors,

which requires efficient analytic orbit models. These observations are important for opera-

tional satellites because collision analyses are made using orbit predictions in the satellite

catalog [59].

This effort is beneficial for satellite communities which use NORAD TLE for propa-

gating orbits of the objects that pose threat to their space assets because low eccentricity

KAM theory can yield position and velocity data to create TLEs before NORAD publishes

them. NORAD publishes a new element set when the difference of positions predicted by

the current and the new element sets exceed 5 km with a 90% confidence interval. LEO

satellites require more frequent updates due to the atmospheric drag. Maneuverable satel-
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lites also need more frequent updates because orbital maneuvers cannot be modeled by

SGP4 [37]. This work uses Vallado’s public domain SGP4 with differential corrections to

determine the accuracy of the orbit predictions yielded by low eccentricity KAM theory

because JSpOC version of SGP4 has no technical details and codes available to public.

2.3 Orbit Prediction using SGP4 and TLE

TLEs are some type of mean elements which are averaged, and smoothly changing over

time or angle. Some period of time, mean anomaly, true anomaly, and eccentric anomaly

can be used to average the elements [60]. TLEs are used by NORAD, and the majority of

the satellite community. NORAD TLE is the default input for most of the commercialized

satellite ground antenna control system and orbit analysis programs [46]. TLE is gener-

ated from observational data flow from SSN using one of five orbit prediction methods

of NORAD. The first one is SGP which was developed by Hilton and Kuhlman [31], and

simplified by the work of Kozai in terms of gravitational and air drag effects [38]. SGP

is used for satellites with a period less than 225 minutes. The second one is SGP4 which

was developed by Cranford in 1970 [41], and simplified by adopting analytic atmospheric

model of Lane and Cranford instead of empirical atmospheric model in 1969 [42]. Table 2

shows parameters required to initialize SGP4. All of the parameters but mean motion are

mean orbital elements defined by Brouwer [9]. Brouwer’s mean elements include only the

effects of the zonal harmonics which are J2, J3, J4, and J5. SGP4 includes orbital mean

elements and their linearizations defined in series expansions. Many assumptions are made

for SGP4. For example, Earth’s gravitational potential includes only a few zonal terms,

the atmospheric model is a static model with an assumption of exponential decay, and the

third-body mass and resonance effects are partially added to the model [62]. Mean motion

in the Table 2 includes only short-period oscillations similar to Kozai’s mean motion [38].

Long-periodic oscillations are masked by air drag, which gradually increases mean motion
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Figure 3. TLE Example for NOAA-6 Weather Satellite

over time, for LEO satellites [28].

Table 2. Parameters to Initialize SGP4 Propagation

Symbols Description
to Epoch time
no Mean motion at epoch
eo Eccentricity at epoch
io Inclination at epoch
ωo Argument of perigee at epoch
Ωo Right ascension of the ascending node at epoch
Mo Mean anomaly at epoch
B∗ Atmospheric drag coefficient

The third one is SDP4 which is developed for orbits with a period more than 225 min-

utes by Hujsak in 1979 [32]. SDP4 includes third-body, sectoral, and tesseral effects,

whereas SGP4 doesn’t. The fourth one is SGP8 which is applicable to near-Earth satellites.

SGP8 depends on the model of Lane and Cranford for gravitational and air drag effects

[42]. The integration of differential equations are treated in a different way for SGP8 than

SGP4. The fifth one is SDP8 which is a deep-space model. SGP8/SDP8 were introduced to

decrease the effects of the deficiencies of SGP4/SDP4 associated with reentry and orbital

decay [62]. A TLE should be used with one of these models because periodic variations

are removed in a way that these five models can compensate for them. Figure 3 shows an

example of a NORAD TLE with descriptions of each elements.

Orbit prediction methods are divided into three different catagories: special perturba-
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tion techniques, general perturbation techniques and semianalytical techniques. Special

perturbation techniques use numerical methods to make predictions. However, numerical

methods are prone to errors due to limited word length of computers. Moreover, long time

steps for integrations result in round-off errors. Special perturbation techniques cannot be

generalized to other orbits because the predictions are special to the orbit that is integrated.

Special perturbation techniques provide predictions accurate in meters. However, they re-

quire high computational power. All perturbations are calculated for every point in time

in special perturbation techniques. General perturbation techniques use closed form solu-

tions to equations of motions of orbits. The complexity of equations of motions requires

omission of higher order terms in the equations. The accuracy of the predictions degrades

rapidly due to these omissions. In addition, orbit predictions made by general perturbation

techniques are not as accurate as those provided by special perturbation techniques. How-

ever, general perturbation techniques provide orbit predictions without calculating every

intermediate points to find the desired point in the future and take an average of all pertur-

bations over time as one parameter which can be integrated into the equations. Therefore,

they are very fast in terms of computation time. SGP4 orbit determination method is such a

general perturbation technique. Semianalytical techniques combine advantages of analyti-

cal methods and numerical methods.

Equation 3 shows the relationship between the SGP4 model and the state vector of a

satellite.

y(t) = fSGP4(xo,B∗, t), (3)

where fSGP4 is the SGP4 model, y(t) is the velocity and position vectors at time t, xo is

the mean orbital elements, which are shown in the Table 2 excluding to and B∗, at the

epoch time. The epoch time is represented as to [46]. Equation 4 shows how the ballistic

coefficient, B, and the atmospheric reference reference density ρo are related to NORAD
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SGP4 air drag term B∗ [52].

B∗ =
1
2

Bρo (4)

Equation 5 can also be used to produce the NORAD TLE given osculating elements and

a good approximation for the NORAD TLE. Equation 5 shows the relationship between os-

culating elements and the NORAD mean elements. B∗ is missing in the Equation 5 because

SGP4 can’t model the air drag term. Therefore, B∗ needs to be calculated separately [46].

B∗ is important for the accuracy of the NORAD TLE. The omission of B∗ value of 10−4

could worsen the accuracy of SGP4 twice as much within approximately 3 days [45].

yi = fSGP4i(x1, ...,x6), (5)

where i=(1,· · · ,6), and yi are osculating elements, xi are the NORAD mean elements. Equa-

tion 5 can be expanded around xa
i , which are good approximations for the NORAD mean

elements, using Taylor series expansion. Equation 6 and Equation 7 show the linear system

of equations after taylor series expansion [45].

∆yi = M∆xi, (6)

M =


∂ fSGP41

∂xa
1

∂ fSGP41
∂xa

2
· · · ∂ fSGP41

∂xa
6

...
... . . . ...

∂ fSGP46
∂xa

1

∂ fSGP46
∂xa

2
· · · ∂ fSGP46

∂xa
6

 , (7)

where ∆yi = yi−ya
i , and ∆xi = xi−xa

i . Partial derivatives in matrix M are hard to solve due

to the coupled nature of the SGP4 model. Newton’s quotient can be used to find the partial

derivatives [25]. Equation 8 shows one of the partial derivatives in the difference quotient
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notation [45].

∂ fSGP41

∂xa
1

=
fSGP4(xa

1 +∆xa
1,x

a
2, · · · ,xa

6)− fSGP4(xa
1,x

a
2, · · · ,xa

6)

∆xa
1

, (8)

where ∆xa
i can be some small increment of percentage of xa

i . The NORAD mean elements

can be approximated using a process called differential corrections. The iterative process

is stopped when the difference between the given osculating elements and derived ones,

which are (yi− ya
i ), are small enough for convergence. Equation 8 shows the iterative

process to approximate the NORAD mean elements [45].

xa+1
i = xa

i +
6

∑
j=1

M−1
i j (yi− ya

i ), (9)

where i=(1,· · · ,6).

There are inevitable deficiencies in the SGP4 theory. Because SGP4 is an analytic or-

bit model, it ignores higher order terms in the equations of motion. Moreover, sectoral

and tesseral gravity field perturbations are not included in the model. The SGP4 model

includes only the effects of the zonal harmonics which are J2, J3, J4,and J5. Therefore, the

SGP4 model yields position errors of 2 km at epoch time [52]. The velocity predictions

made by the NORAD TLE and the SGP4 are less accurate than the position predictions be-

cause the rates of change in the orbital parameters, which are not accurate due to inevitable

deficiencies in the SGP4 theory, are used to calculate velocities [28].

The accuracy of the Vallado’s SGP4 with differential corrections for near-Earth objects

are on the order of magnitude of 100 km. The prediction accuracy worsens with decreasing

altitude, and increasing eccentricity and solar flux. Table 3 and Table 4 show the SGP4

orbit prediction accuracy of the near-Earth objects in terms of the root mean square values

with respect to two different solar flux values [24].
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Table 3. The Orbit Prediction Accuracy of the Near-Earth Objects (F10 = 100)[24]

Altitude(km) Test Cases 1day(km) 3days(km) 7days(km) 15days(km)
h<400 57 4 10 60 300
400≤h<600 168 3 10 50 100
600≤h<1200 267 3 10 20 50
1200≤h<7000 90 2 10 10 20

Table 4. The Orbit Prediction Accuracy of the Near-Earth Objects (F10 = 200)[24]

Altitude(km) Test Cases 1day(km) 3days(km) 7days(km) 15days(km)
h<400 57 10 40 300 1000
400≤h<600 168 7 30 200 400
600≤h<1200 267 6 15 70 100
1200≤h<7000 90 2 10 10 20

2.4 Reference Frames

Reference frames are important for classical and analytic mechanics. All equations

of motions are written in some frame of reference. The first step in solving a dynamical

problem is defining the reference frame. There are two different types of reference frames,

which are inertial and rotating frames. There is no solution for any dynamical problem

in classical mechanics unless an inertial frame is defined. This effort formulate satellite

Figure 4. Reference Frames
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Table 5. Reference Frames

Acronym Reference
Frame

Type Origin 1st axis 2nd axis 3rd axis

RAN Radial,
Along-
Track,and
Normal

Rotating
frame

Space
object
CoM

Toward
radial
direction
(U)

Normal
to orbital
frame
(W )

Along
velocity
direction
(V )

ECI Earth-
Centered-
Inertial
frame

Inertial
frame

Earth
CoM

Toward
vernal
equinox
(γ)

Completes
right-
handed
frame (ε)

Earth’s
axis of
rotation
(ζ )

ECEF Earth-
Centered-
Earth-
Fixed
frame

Rotating
frame

Earth
CoM

Toward
prime
meridian
in equa-
torial
plane (x)

Completes
right-
handed
frame (y)

Earth’s
axis of
rotation
(z)

ECNF Earth-
Centered-
Node-
Fixed
frame

Rotating
frame

Earth
CoM

Toward
ascend-
ing node
in equa-
torial
plane (ξ )

Completes
right-
handed
frame
(η)

Earth’s
axis of
rotation
(ζ )

motion using 4 different reference frames, which are defined in Table 5 and Figure 4.

Reference frames in Table 5 are helpful in different ways for this effort. RAN reference

frame is used to make residuals between SGP4 and low eccentricity KAM theory predic-

tions meaningful because it is hard to analyze the residuals in ECI frame. ECNF reference

frame is important because orbits are not periodic in ECI frame although they are in ECNF

frame. Periodic orbits are not periodic in ECI frame because orbital plane regresses due to

the zonal potential. Moreover, the Keplerian frequency is defined in a frame which is tied

to the node of the orbit. Thus, it can simply be generalized to ECI and ECEF frame because

the zonal potential is symmetric about the earth’s polar axis. Greenwich referenced ECEF

frame simplifies calculations because the gravitational field potential is constant in ECEF
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frame.

2.5 Analytical Dynamics

Equations of motions are formulated using momentum and force in Newtonian me-

chanics. Objects and forces applied on them are considered separately. For Newtonian

mechanics, constraint forces, which are forces that do no work, may be needed to solve

dynamical problems. However, analytical dynamics considers a dynamical system as a

whole not separately. For analytical dynamics, equation of motions are formulated using

kinetic energy and work, which are both scalar quantities. Therefore, constraint forces are

not needed to solve dynamical problems. Dynamical systems in analytical dynamics are

defined in generalized coordinates, which are finite, continuous, and differentiable with

respect to time. In addition, generalized coordinates aren’t restricted to be physical quan-

tities. Number of generalized coordinates for a system equals to the number of degrees of

freedom that the system has [51]. Many complex dynamical systems can be solved without

much effort using analytical dynamics. Figure 5 shows the evolution of transition from

Newtonian to Lagrangian mechanics.

Figure 5. Evolution of the Transition from Newtonian to Lagrangian Mechanics

Principle of virtual work is based on static equilibrium of a system. It is the first varia-

tional principle in mechanics [51]. Constraint forces are perpendicular to virtual displace-
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ments. However, formulation of equations of motions relies on forces. Equation 10 and

Equation 11 show the virtual work of the entire system equals to zero.

δW =
N

∑
i=1

Fi ·δ ri +
N

∑
i=1

F ′i ·δ ri = 0, (10)

N

∑
i=1

F ′i ·δ ri = 0, (11)

where Fi are external forces, and F ′i are constraint forces applied on the system. δ ri are

virtual displacements.

D’ Alembert’s principle is an extension of principle of virtual work to dynamics. D’

Alembert’s principle treats dynamical problems as if they were statical. Equation 12 shows

the most general formulation of dynamics [51].

N

∑
i=1

(Fi− ṗi) ·δ ri = 0, (12)

where ṗi is rate of change of the momentum, which is also called inertia force.

Hamilton’s law is important because it depends on kinetic and potential energy instead

of force and momentum. Both principal of virtual work and D’ Alembert’s principle are

similar to Newtonian mechanics in formulating equations of motion because they all de-

pend on force and momentum. The first step in transition from D’ Alembert’s principle

to Hamilton’s law is integrating D’ Alembert’s principal equation over a finite period of

time, and expressing momentum in terms of kinetic energy. The derivation of Hamilton’s

law introduces Lagrangian, which is the difference between kinetic and potential energy.

Equation 13 represents Hamilton’s law of varying action. Hamilton’s law of varying action

is valid for non-linear, non-conservative, non-stationary dynamic systems. Variations of

the generalized coordinates δq j aren’t necessarily zero because the system state q j isn’t

always known at time t1 and t2, which shows the system is non-stationary. Variation of any
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constant value equals to zero [39].

∫ t2

t1
δLdt +

∫ t2

t1
δW −

N

∑
j=1

(
∂T
∂ q̇ j

δq j)

∣∣∣∣∣
t2

t1

= 0, (13)

L = T −V, (14)

where L is Lagrangian, T is kinetic energy,and V is potential energy.

Hamilton’s principle is an extension of Hamilton’s law. For Hamilton’s principle, the

generalized coordinates δq j are assumed to be known at end points t1 and t2. Hamilton’s

principle is applicable when there are no non-conservative forces, whereas extended Hamil-

ton’s principle is applicable when there are non-conservative forces in the system. Equa-

tion 15 shows Hamilton’s principle, and Equation 16 shows extended Hamilton’s principle

[39]. Hamilton’s principle is a variational principle which reduces a dynamical problem

to a scalar integral independent of coordinates, which describes Lagrangian. Equations of

motion are obtained by figuring out the conditions which make the scalar integral station-

ary. Figure 6 represents true path and varied path, which the true path coincide with two

end points t1 and t2. The varied path is formed when the virtual displacements is applied,

which by definition, has no change in δ ri [51].

∫ t2

t1
δLdt = 0 (15)

∫ t2

t1
δLdt +

∫ t2

t1
δWdt = 0 (16)

Lagrange equations are n number of coupled second-order differential equations, which

has n number of generalized coordinates. Lagrange equations are derived from Hamilton’s
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Figure 6. True Path and Varied Path

law of varying action as [39]:

∫ t2

t1
δL(qi, q̇i, t)dt +

∫ t2

t1
δW −

N

∑
j=1

(
∂T
∂ q̇ j

δq j)

∣∣∣∣∣
t2

t1

= 0 (17)

After calculating the variation of the Lagrangian,

N

∑
i=1

∫ t2

t1
(

∂L
∂ q̇i

δ q̇i +
∂L
∂qi

δqi)dt +
∫ t2

t1
δW −

N

∑
j=1

(
∂T
∂ q̇ j

δq j)

∣∣∣∣∣
t2

t1

= 0 (18)

After integrating Lagrangian terms by parts, and cancelling the trailing term, which shows

the system could be non-stationary,

N

∑
i=1

∫ t2

t1

[
d
dt
(

∂L
∂ q̇i

)− ∂L
∂qi
−Qi

]
δqidt = 0, (19)

where Qi is generalized force. The integrand can be equated to zero because the system

can be considered stationary. Equation 21 shows Lagrange’s equations when there is no

non-conservative force in the system because virtual work equals to zero.

d
dt
(

∂L
∂ q̇i

)− ∂L
∂qi
−Qi = 0 (20)
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d
dt
(

∂L
∂ q̇i

)− ∂L
∂qi

= 0 (21)

2.6 Hamilton’s Equations

The Hamiltonian formulation is an alternative to the Lagrangian formulation [16]. They

both have the same physics. The Lagrangian formulation has n number of second-order

differential equations, whereas the Hamiltonian formulation has 2n number of first-order

differential equations. The Lagrange’s equations describe mechanics in terms of general-

ized coordinates and velocities, whereas the Hamilton’s equations rely on the generalized

coordinates, qi, and momenta, pi [29]. Equation 22 shows the equation for the generalized

momenta. The generalized momenta can be described as linear functions of the general-

ized velocities. Conversely, the generalized velocities can be shown to be linear functions

of the generalized momenta [51]. The Legendre transform of the Lagrangian yields the

Hamiltonian. Equation 23 shows the Hamiltonian.

pi =
∂L(qi, q̇i, t)

∂ q̇i
, (22)

H(p,q, t) = ∑
i

q̇i pi−L(q, q̇, t), (23)

where H(p,q, t) is Hamiltonian, which can fully describe the motion [51].

The Hamilton’s formalism are more powerful than Lagrange formalism. The apparent

advantage of the Hamilton’s equations over Lagrange equations is that time derivatives of

the variables are on the left side of the equations, which may help to figure out first integrals

of motion. Moreover, the Hamilton’s equations are favorable in representing the solution

in geometrically because 2n-dimensional representation is advantageous in representing

not only one path but totality of paths, which are all possible solutions. In Hamiltonian
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phase space, the velocity of every point can be determined uniquely, whereas the motion

can start in any direction, and paths may intersect in the Lagrangian configuration space,

which makes totality of paths confusing [51]. The canonical equations of Hamiltonian can

be derived from the Hamiltonian as [29]:

dH = ∑
i

∂H
∂qi

dqi +∑
i

∂H
∂ pi

d pi +
∂H
∂ t

dt (24)

After substituting Equation 23 into Equation 24,

dH = ∑
i

q̇id pi−∑
i

∂L
∂qi

dqi−
∂L
∂ t

dt (25)

and from Equation 22 it follows as,

dH = ∑
i

q̇id pi−∑
i

ṗidqi−
∂L
∂ t

dt (26)

After equating each term in Equation 26 to each term in Equation 24,

q̇i =
∂H
∂ pi

, ṗi =−
∂H
∂qi

(27)

Equations 27 are the canonical equations of Hamilton, which are 2n number of first-order

differential equations.

2.7 Canonical Transformations

Hamiltonian formalism doesn’t introduce an efficient calculation tool by itself. The

freedom in choosing the physical quantities as coordinates and momenta is beneficial for

solving difficult dynamical problems. Changing coordinates helps to reveal much about any

dynamical system. In Hamiltonian mechanics, the Hamiltonian is constant if it doesn’t ex-
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plicitly depend on time, and the momenta are constant if the associated coordinates, which

are called ignorable or cyclic coordinates, are missing in the Hamiltonian. However, it is

necessary to start from the beginning when the change of coordinates is required. More-

over, for Hamiltonian formalism, the coordinates can be changed to anything as long as

they describe the system, but the momenta are dictated by the Lagrangian, see Equation 22.

One method for changing coordinates without starting from the beginning by conserving

the structure of Hamiltonian dynamics is canonical transformation [64].

Assume Equation 28 represents new canonical coordinates, and Equation 29 represents

new momenta:

Qi = Qi(qi, pi, t) (28)

Pi = Pi(qi, pi, t) (29)

Also assume a new Hamiltonian K = K(Qi,Pi, t), and Hamilton’s equations as:

Q̇i =
∂K
∂Pi

, Ṗi =−
∂K
∂Qi

(30)

The old variables qi and pi, and the new variables Qi and Pi are supposed to describe the

same dynamical system. The Hamilton’s principle can be used to show that the variation

of both integrals equal to zero as:

δ

∫
(

N

∑
i=1

piq̇i−H)dt = 0, (31)

δ

∫
(

N

∑
i=1

PiQ̇i−H)dt = 0, (32)

where L can be deduced from Legendre transform as L = (∑N
i=1 piq̇i−H). Although the

variations of both integrals equal to zero, the integrands aren’t equal. The total time deriva-
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tive of an arbitrary function F separates two integrands from each other as:

δ

∫
[∑ piq̇i−H(pi,qi, t)−∑PiQ̇i

+K(Qi,Pi, t)−
dF
dt

]dt = 0
(33)

The variation vanishes at end times as:

δ

∫ t2

t1

dF
dt

dt = δ (F(t2)−F(t1)) = 0, (34)

where F is the generating function, which is a function of independent 2n variables. Ta-

ble 6 shows the four possible forms of the generating function F . The generating function

F needs to be known in order to apply the transformation. F can be obtained from the

relationship between old and new coordinates, and Table 6, see Wiesel [64].

Table 6. Canonical Transform Relations

F1(q,Q, t) F2(q,P, t) F3(p,Q, t) F4(p,P, t)

pi =
∂F1
∂qi

pi =
∂F2
∂qi

qi =−∂F3
∂ pi

qi =−∂F4
∂ pi

Pi =− ∂F1
∂Qi

Qi =
∂F2
∂Pi

Pi =− ∂F3
∂Qi

Qi =
∂F4
∂Pi

The new Hamiltonian K and the old Hamiltonian H are related by Equation 35 as:

K(Q,P, t) = H(q, p, t)+
∂F1

∂ t
(35)

2.8 Hamilton-Jacobi Theory

The easier solution to a dynamical system can be accomplished when the more coor-

dinates are missing in the Hamiltonian. Moreover, any momenta missing from the new

Hamiltonian dictates that its conjugate coordinate is constant. If the new momenta, K,
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equals to zero, all the new coordinates and momenta are constant [64]. Equation 36 shows

that the new Hamiltonian equals to zero, which is called the Hamilton-Jacobi equation, and

Equation 37 shows that the new coordinates and momenta are constant [29].

H(qi, pi, t)+
∂F
∂ t

= 0 (36)

Q̇i =
∂K
∂Pi

= 0

Ṗi =−
∂K
∂Qi

= 0
(37)

It is favorable to use a generating function which is a function of the old coordinates,

qi, and the new momenta, Pi. The generating function, F2, from Table 6 is such a function.

Therefore, Equation 36 becomes [29]:

H
(

qi,
∂F2

∂qi
, t
)
+

∂F2

∂ t
= 0 (38)

Equation 38 is known to be Hamilton’s principal function. The solution to this equation is

denoted by S as [29]:

S = S(q1 · · ·qn,α1 · · ·αn, t), (39)

where αi are n number of constants of the integration because S is the solution to the first-

order differential equation. Therefore, one of the variables of the solution has to be an

arbitrary constant added to the solution S. Using the analogy of the physical description

of the generating function, the constants of the integration, αi, can be chosen as the new

momenta, Pi [29]:

Pi = αi (40)
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After applying transformation for the F2 generating function from Table 6 [29]:

pi =
∂S(qi,αi, t)

∂qi
(41)

Continuing with the second half of the transformation [29]:

Qi = βi =
∂S(qi,αi, t)

∂αi
(42)

Both αi and βi can be obtained by evaluating partial derivatives with the known initial

conditions. The Hamilton-Jacobi equation can be solved as [29]:

q = q(αi,βi, t) (43)

The Hamilton’s principal function helps to transform the old variables to new constant

coordinates and momenta. A solution to the dynamical system is obtained when solving the

Hamilton-Jacobi equation. The relationship between the Hamilton’s principal function and

the Hamilton’s principle can be shown by examining total time derivative of the Hamilton’s

principle function, S [29]:
dS
dt

= ∑
i

∂S
∂qi

q̇i +
∂S
∂ t

(44)

After inserting Equation 36 and Equation 41, Equation 44 becomes:

dS
dt

= ∑
i

piq̇i−H = L (45)

Therefore, a constant differs the Hamiltonian principle function from Hamilton’s principle

as:

S =
∫

L dt + constant (46)

For Hamilton’s principle, the solution to a dynamical system is obtained by solving the
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definite integral of Lagrangian, L. Equation 46 represents the same integral in indefinite

form which can be used to solve a dynamical system.

Hamilton’s principle function can be separated in two parts when the Hamiltonian

doesn’t explicitly depend on time as [29]

S(qi,αi, t) =W (qi,αi)−α1t, (47)

where W (qi,αi) is the first part of the solution, which depends on the old coordinates

and the new momenta, and appears only when the Hamiltonian is constant. W (qi,αi) is

called Hamilton’s characteristic function. Equation 47 is the solution to the Hamilton-

Jacobi equation [29]:
∂S
∂ t

+H(qi,
∂S
∂qi

) = 0 (48)

After substituting Equation 47, the Equation 48 becomes [29]:

H(qi,
∂W
∂qi

) = α1, (49)

where one of the constants of integration, α1, equals to the constant value of the Hamilto-

nian, H. The new Hamiltonian, K, equals to α1 because H doesn’t depend on time [29]:

K = α1 (50)

After calculating Hamilton’s equations for the new Hamiltonian, K [29]:

Ṗi =−
∂K
∂Qi

= 0, Pi = αi

Q̇i =
∂H
∂αi

= 1 i = 1

= 0 i 6= 1

(51)
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After denoting the generating function by W (qi,Pi), the solution becomes [29]:

Q1 = t +β1 ≡
∂W
∂α1

Qi = βi ≡
∂W
∂αi

i 6= 1
(52)

where Q1 is not a constant of the motion, and time , t, is a coordinate and the Hamiltonian

is its conjugate momenta [29].

2.9 Action-Angle Variables

The periodic motion is of great importance in physics. The frequencies of the motion is

mostly more desirable than the other properties of the orbit. A variation of the Hamilton-

Jacobi process is used to obtain the frequency of the periodic motion. The action variables,

J, are chosen instead of the new momenta of the Hamilton-Jacobi equations. Ji are inde-

pendent functions of the αi of the Section 2.8. Figure 7 shows an example of the two types

of periodic motion. For oscillation, the system repeats its track for every point because q

and p return to its original values after one period. For rotation, the position coordinate q

is an unbounded angle of rotation, which grows indefinitely with a period of qo, whereas q

is bounded for oscillation [29].

Ji can be defined as [29]:

Ji =
∮

pidqi (53)

After applying the canonical transformation, Equation 53 becomes [29]:

Ji =
∮

∂W (qi,αi)

∂qi
dqi, (54)

where the solution to the Equation 54 is Ji as independent functions of αi. Substituting Ji
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Figure 7. The Orbit of Phase Space for Periodic Motion [29]

for αi yields the characteristic function W as [29]:

W =W (q1 · · ·qn;J1 · · ·Jn) (55)

Also, the angle variables, ωi, are the conjugate coordinates to the Ji [29]:

pi =
∂W
∂qi

ωi =
∂W
∂Ji

(56)

The Hamiltonian is a function of only Ji because wi are cyclic [29]:

H = H(J1 · · ·Jn) = α1 (57)

The Hamilton equations of motions for the new variables become [29]:

J̇i =−
∂H
∂ωi

= 0

ω̇i =
∂H
∂Ji

= νi

(58)
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where νi are constant functions of Ji. The solution becomes [29]:

Ji = constant

ωi = νit +βi

(59)

where the solution doesn’t introduce any advantage over the αi coordinates from the Sec-

tion 2.8. The advantage of this process is that the Action-Angle variables transformation

yields the frequencies, νi, of the periodic motion without finding a complete solution. If a

system is periodic, the energy of the system can be defined in terms of Ji by Equation 53.

Next, the frequencies, νi, of the system can be obtained by Equation 58. The ωi are conve-

niently called angle variables due to Equation 59 [29].

The fact that the frequency νi are related to qi can be proved by investigating the change

in one of the angle variables, ωi, when one of the coordinates, qi, completes its one cycle

of oscillation or rotation. The Equation 60 shows that the change in the angle variable is

caused by an incremental increase in one of the coordinates, q j [29]:

∆ωi =
∮

δωi, (60)

where δωi is the infinitesimal change due to the incremental increase in one of the coordi-

nates, q j [29]:

δωi =
∂ωi

∂q j
dq j (61)

Also, by Equation 56 and Equation 61, ∆ωi can be written as [29]:

∆ωi =
∮

∂ωi

∂q j
dq j =

∮
∂ 2W

∂q j∂Ji
dq j (62)

The Ji in the denominator can be taken out of the integral because Ji are independent func-
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tions of only αi [29]:

∆ωi =
∂

∂Ji

∮
∂W
∂q j

dq j =
∂

∂Ji

∮
p jdq j (63)

By Equation 53, ∆ωi becomes [29]:

∆ωi =
∂J j

∂Ji
= 1 i = j

= δi j i 6= j
(64)

If τi is the period of the motion related to qi, Equation 65 becomes [29]:

∆ωi = 1 = νiτi

νi =
1
τi

(65)

2.10 General Canonical Transformations

It is not an easy task to create a generating function for every canonical transformations.

A different approach to canonical transformations can be initiated as [64]:

xT = {qi, pi} (66)

Next, the Hamilton’s equations of motion becomes [64]:

q̇i =
∂H
∂ pi

ṗi =−
∂H
∂qi

(67)
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Equation 67 can be defined in terms of phase space state vector by Equation 66 [64]:

ẋ = Z
∂H
∂x

Z =

 0 I

−I 0


(68)

where Z satisfies the properties [64]:

−Z = ZT = Z−1 (69)

Nothing new has been introduced except representing the Hamilton’s equations in terms

of the phase space state vector. The transformation of the phase space from the old vari-

ables, x, to the new variables, y, can be accomplished as [64]:

x = f (y) (70)

Then, the new Hamiltonian, K, becomes [64]:

K(y) = H( f (y)), (71)

where the old Hamiltonian, H, doesn’t explicitly depend on time. The transformation, f , is

valid as long as it is a canonical transformation. Therefore, the conditions which make f a

canonical transformation should be examined. The new coordinates and momenta should

comply with the Hamilton’s equations as [64]:

ẏ = Z
∂K
∂y

(72)

Converting Equation 72 to Equation 68 may reveal these conditions. Equation 73 shows
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the time derivative of the transformation, and Equation 74 represents the gradient of the new

Hamiltonian [64]:

ẋ =
∂ f
∂y

ẏ (73)

∂K
∂y

=
∂

∂y
H( f (y)) =

(
∂ f
∂y

)T
∂H
∂x

(74)

Combining these equations with Equation 72 yields [64]:

ẏ = (
∂ f
∂y

)−1ẋ = Z(
∂ f
∂y

)T ∂H
∂x

(75)

Then, Equation 75 yields ẋ as [64]:

ẋ = (
∂ f
∂y

)Z(
∂ f
∂y

)T ∂H
∂x

(76)

Comparing Equation 68 to Equation 76 immediately yields [64]:

(
∂ f
∂y

)Z(
∂ f
∂y

)T = Z, (77)

where the first-order partial derivative is called the Jacobian matrix J. The J matrix is

symplectic when it satisfies [64]:

JZJT = Z (78)

Therefore, the transformation, f , is a canonical transformation if its Jacobian matrix is

symplectic.

2.11 Orbit Perturbations for Near-Earth Satellites

Orbit perturbations are the deviations from the two-body orbit motion. Two-body mo-

tion assumes that secondary body orbits around a point of mass or spherically symmetric
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sphere [15]. However, Earth is neither a point of mass nor spherically symmetric. The

equatorial bulge, continental blocks, ocean basis, and mountain ranges result in gravita-

tional field deviations from the two-body point of mass. Another important perturbation

for near-Earth satellites is air drag. Air drag effect is bigger when a satellite has smaller

mass with bigger cross section. Air drag acceleration is a non-conservative force, which

determines the orbit lifetime of a satellite in Low Earth Orbit (LEO) [64]. Table 7 repre-

sents three categories for Earth orbits. LEO satellites are primarily affected by air drag and

non-sphericity of Earth, and both MEO and GEO satellites are mainly perturbed by solar-

radiation pressure and third-body effects [60]. This work includes air drag, and sectoral and

tesseral harmonics perturbation accelerations. The effects of zonal harmonics perturbation

are included in the periodic orbit, see Section 3.2.

Table 7. The Three Categories of Earth Orbits [60]

Orbit Altitude (km)
Low Earth Orbit (LEO) h < 800
Medium Earth Orbit (MEO) 800 ≤ h < 30,000
Geostationary Orbit (GEO) h = 35,780

The gravitational field equation, which is also called Poisson’s equation, is the funda-

mental partial differential equations for gravitational fields [64]:

∇
2V = 4πGρ, (79)

where G is the gravitational constant, ρ is mass distribution, ∇2 is Laplacian operator, and

V is gravitational potential function. Equation 79 defines the gravitational potential of a

sphere. The gravitational potential can be calculated by Equation 79 when mass distri-

bution, ρ , is provided. However, the gravitational potential outside the sphere is needed.

Equation 80 represents the infinite series of the gravitational potential function outside a
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Figure 8. The Visual Depictions of Spherical Harmonics [60]

sphere, which has a radius of R⊕ [64].

V (r,θ ,φ) =−µ

r

∞

∑
n=0

n

∑
m=0

(
r

R⊕
)−nPm

n (cosθ)

× (Cnmcosmφ +Snmsinmφ)

(80)

where µ is the gravitational parameter, n and m are the order and degree of the expansion,

respectively, R⊕ is the radius of Earth, Pm
n are the associated Legendre functions, the θ

is the geocentric latitude, φ is the longitude, and Cnm and Snm are gravitational constants,

which can be obtained from the gravitation models. Both Cnm and Snm define the shape of

the gravitational field [64]. All spherical harmonics in the gravitational potential field of

Earth, which are zonal, tesseral, and sectoral harmonics, can be represented by Equation 80

[60]. Figure 8 shows the visual depictions of three types of spherical harmonics.

Newtonian point of mass potential can be obtained from Equation 80 when m,n = 0.
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The first term is free of longitude and latitude terms because cos mφ = 0, sin mφ = 0,

C00 = 1, and the associate Legendre function P0
0 = 1.

V =−µ

r
, (81)

where V is the Newtonian point of mass potential.

The geopotential expansion yields zonal harmonics when n is the order and m = 0

is the degree. The smallest zonal harmonic, which has n = 1 order and m = 0 degree,

is considered to be zero because it shifts the center of mass of Earth parallel to North-

South axis. Any frame which doesn’t have its origin at the center of mass is not practical.

Therefore, the first zonal harmonic equals to zero, J1 = 0, when the origin is defined at the

center of Earth. The second zonal harmonic specifies the oblateness of Earth at the equator.

For the Earth’s potential expansion, the J2 is second to the Newtonian point mass potential

in strength. The Newtonian potential is 103 times bigger than the the J2. The contribution

of J2 term to the gravitational potential can be represented as [64]:

V20 =
µR2
⊕J2

2r3 (3cos2
θ −1), (82)

where J2 = −C20 = 0.001082. For the second zonal harmonic, J2, mass concentration is

bigger at the equator than the poles. The higher order zonal harmonics add more terms to

the potential, which model the irregularities of the mass distribution along the longitudes.

See Figure 8 for the visual depiction of zonal harmonics [64].

The sectoral harmonics are the terms with equal orders and degrees in the potential

expansion, n = m. They are functions of only longitude, and they change signs across

the longitudes. The first sectoral harmonic, n = m = 1, changes the location of center of

mass away from the origin of a reference frame to another one in the equatorial plane.

Therefore, S11 =C11 = 0 because it is always desirable to have center of mass at the origin
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of a reference frame. The second sectoral harmonic, n = m = 2, contributes to the potential

as [64]:

V22 ∝ C22cos 2φ +S22sin 2φ , (83)

where φ is the longitude. The second sectoral harmonics, C22 and S22, are on the order of

10−6. J2 is 103 times bigger than C22 and S22. The mass concentrations of Earth at Eurasia

and the Americas are bigger than Pacific and Atlantic ocean basis due to the second sectoral

harmonics. See Figure 8 for the visual depiction of sectoral harmonics [64].

The tesseral harmonics are the case when n 6=m 6= 0 in the geopotential expansion. They

create a sphere with rectangular square-tiled boards on it. The number of bands in latitude

is n−m+ 1 because of Pm
n (cos θ) dependence. The terms , Cnmcos mφ and Snmsin mφ ,

disappear for 2m meridians. Therefore, there are 2m bands in longitude. See Figure 8 for

the visual depiction of tesseral harmonics [64, 60].

The gravity models, such as EGM96, include the coefficients, Cnm and Snm. The gravity

models are built from terrestrial or satellite measurements. The satellite measurements are

orbit dependent. Therefore, the accuracy of a gravity model depends on the number of

satellites with different orbits. This effort uses the EGM96 gravity model. The EGM96 is

developed by the University of Texas at Austin, the Defence Mapping Agency, Ohio State

University, and the Goddard Spaceflight Center. The EGM96 includes 30 different satellite

measurements and terrestrial gravity measurements. It is a complete model with degree and

order 360 [60]. However, this work uses only order and degree 20 because it provides high

accuracy with low computational power requirement. Figure 9 represents the variations in

the geopotential.

The air drag is the other perturbation included by this work. The air molecules behave

individually, which is called the free molecular flow regime, at the altitude of satellites.

The air molecules impact the motion of the satellites. Equation 84 represents the drag law
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Figure 9. GRACE Gravity Model [53]
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Figure 10. Temperature Variations in the Atmosphere

[64]:

ad =−1
2

CDA
m

ρV V, (84)

where Cd is the drag coefficient, which is 2.2 for flat plane models, and between 2.0 and

2.1 for spheres for the most part, ρ is the atmospheric density, A is the cross-sectional area

of the satellite, V is the velocity of the satellite relative to the air molecules, and m is the

mass of the satellite. The drag coefficient, Cd , specifies the vulnerability of a satellite to

the air drag, and it is dimensionless. The atmospheric density at the altitude of a satellite

is represented by ρ , which is difficult to calculate due to the interaction between Earth’s

upper atmosphere and Sun. The cross-sectional area, A, is also difficult to calculate because

the attitude of the satellite must be known. Moreover, it is almost impossible to determine

the attitude of a tumbling satellite [60].

Solar flux and geomagnetic storms heat up the thermosphere. Therefore, the upper at-
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mosphere expands, which increases the number of air molecules. During Solar maximum

the emission of Extreme Ultraviolet radiation (EUV) increases because Solar flare and

Coronal Mass Ejection (CME) events increase during Solar maximum. Charged particles

coming from the night side of the Earth’s atmosphere during geomagnetic storm interact

with air molecules, and increase their energy, which expands the upper atmosphere. Ge-

omagnetic storms cause delayed expansion in the atmosphere because storms first hit the

day side of the Earth’s atmosphere. Both Solar flux and geomagnetic storms increase the

atmospheric density in the upper atmosphere. Figure 10, which is plotted using Mass Spec-

trometer - Incoherent Scatter (MSIS-E-90) model data, shows the temperature change in

the atmosphere due to the diurnal variations and the Solar cycle, and Figure 11, which is

plotted using SGP4 and TLE prediction data, represents the impact of air drag on the Delta

1 rocket body over 138 days, which has an altitude of 482 km.
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Figure 11. Air Drag Effect on the Delta 1 Rocket Body

Although the atmospheric density is unpredictable, it is very important for the accuracy

of the orbit predictions. Many atmospheric models, which are either static or time-varying,

has been developed. Every model is either based on physical models, which are built

by combining conservation laws and atmospheric-constituent models or developed from

in-situ measurements and satellite-tracking data. Every atmospheric model is different in

terms of speed, accuracy, and applicability. Therefore, there is no model which provides
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best results for all applications. This effort uses the 1962 Standard Atmosphere. The

routine for the atmosphere model requires the altitude of each layer, molecular weight, and

molecular temperature. Moreover, the temperature within each layer changes linearly, see

Regan and Anandarskarian [27]. It is an ideal, static atmospheric model at a latitude of 45◦

during moderate Solar activity [60].

2.12 Numerical Integration Methods

There are many numerical integration methods which have been developed to solve

ordinary differential equations. Most of these methods have been successfully applied in

celestial mechanics. However, there is no numerical integration method which yields the

best solution to every problem pertaining to the motion of satellites. The most important

numerical integration methods for orbit computations are Runge-Kutta methods, multistep

methods, and extrapolation methods. Runge-Kutta methods are easy and applicable to wide

range of different problems. Multistep methods are very efficient, but they need to store

previous data points. Extrapolation methods are highly accurate [56].

This effort uses 4th-order Hamming predictor-corrector method, which is basically a

multistep numerical integrator. It requires four values of the state vector. However, only

the initial conditions are know at the beginning. The other three values can be obtained by

a process called Picard iteration. Equation 85 shows the Picard iterative process:

yn+1(x) = yn +
∫ x

xo

f (t,yn(t))dt

yn(x) = yn

(85)

If the Picard iteration converges, the four values of the state vector are extrapolated to

give the next value for the state vector, which is the predictor part. Next, the extrapolated

state is corrected using better values of the equations of motion, which is the corrector

part. Although predictor-corrector methods require complex algorithms, they are favorable
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because of their stability.

2.13 KAM theory

The French mathematician and physicist Henri Poincaré found out that 3BP is unsolv-

able because of small divisors problem. He suggested that N-Body Problem is mathemati-

cally unsolvable. Birkhoff and Smale proved Poincaré’s earlier findings, and they suggested

that some nonlinear systems aren’t solvable. The primary question was: When does a sys-

tem behave chaotically? The KAM theory, which was announced by A.N. Kolmogorov in

1954, and proved by J. Moser and V.I. Arnol’d in the early 1960’s, is the solution to this

question from the Hamiltonian aspect. The KAM theory explains what happens when an

integrable Hamiltonian is perturbed. It is developed to overcome the difficulties in pertur-

bation theory about small divisors [50]. The KAM theory states that an integrable, which

means n constants of the motion are known, Hamiltonian has a phase space motion which

lies on a n-dimensional torus in 2n-dimensional phase space, where n is the number of in-

dependent coordinates [47, 6]. The quasi-periodic motion can be represented by action and

angle variables, see Section 2.9. The quasi-periodic orbits describe integrable motion on

the invariant torus. If any trajectory is on an invariant torus in phase space, it will stay on

the torus [5]. The quasi-periodic motions have n number of frequencies, which is dictated

by the Hamilton-Jacobi theory [65].

The fundamental equation for the KAM theory can be shown as :

H(I,θ) = Ho(I)+ εH1(I,θ), (86)

where H is the perturbed Hamiltonian, H1 is the perturbing Hamiltonian, Ho is the in-

tegrable Hamiltonian, ε is a small real number, ε << 1, and I and θ are action-angle

variables. Ho and H1 must be real analytic functions, which are infinitely differentiable
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Figure 12. A Visual Depiction of 1-Torus [50]

functions. The action variable I is constant and θ is a linear function of time because Ho

is only a function of I, see Equation 27. Figure 12 represents 1-torus, and Figure 13 shows

2-torus where the action variables, I, are constant and the angle variables, θ , are functions

of time.

If the solutions for the perturbed Hamiltonian Equation 86 lie on n-dimensional tori,

there are new action-angle variables as [57]:

H(I,θ) = H ′(I′) (87)

Equation 87 represents the generating function, S, for the Hamilton-Jacobi transformation,

see Section 2.8 [57]:

I =
∂S(I′)

∂θ

θ
′ =

∂S(I′)
∂ I′

(88)

New Hamiltonian is a function of only I’ because the θ variables are cyclic, and the

Hamilton-Jacobi equation becomes [57]:

H(
∂S
∂θ

,θ) = H ′(I′) (89)
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Figure 13. A Visual Depiction of 2-Torus

Power series expansion in ε can yield a solution to the generating function, S, as [57]:

S = So + εS1 + ε
2S2 + · · · (90)

Substituting Equation 89 in Equation 88 assuming So = I′ · θ because Equation 87 yields

I = I′ and θ = θ ′ after the assumption [57]:

Ho(I′+ ε
∂S1

∂θ
+ ε

2 ∂S2

∂θ
+ · · ·)

+ εH1(I′+ ε
∂S1

∂θ
+ · · · ,θ) = H ′(I′)

(91)

The expansion of Equation 91 for small ε keeping only the first-order terms yields [57]:

Ho(I′)+ ε
∂Ho

∂ I′
· ∂S1

∂θ
+ εH1(I′,θ) = H ′(I′) (92)

Then, H1(I′,θ) and S1(I′,θ) can be represented as Fourier series [57]:

H1 = ∑
m

H1,m(I′)exp(im ·θ)

S1 = ∑
m

S1,m(I′)exp(im ·θ)
(93)

where m is a vector with n rows consisting of integers. Substituting Equation 93 in Equa-
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Figure 14. Elliptic Islands and Hyperbolic Fixed Points

tion 92 yields [57]:

S1 = i∑
m

H1,m(I′)
m ·νo(I′)

exp(im ·θ) (94)

where νo is the unperturbed n-dimensional frequency vector by Equation 59. The infinite

sum must converge to provide a solution. Moreover, the same condition must be satisfied

for S2, S3, · · · if ε is expanded to higher orders. Although a method of successive ap-

proximations to S has been shown here, the proof of KAM theory depends on complex

successive approximations which converge much faster.

The convergence of the sum depends on the denominator, m · νo(I′). This problem is

called the small divisors problem. The action variables, I, specify the resonant tori, which

behave chaotically when ε > 0, for the unperturbed system when m · νo(I′) = 0. On the

other hand, the nonresonant tori must satisfy the Equation 94 [57]:

|m ·ν |> K(ν)|m|−(n+1), (95)

where m are vectors consisting of integers, the absolute value of m, |m|, is the sum of all m

vectors up to number n, and K(ν)> 0 is an arbitrary number independent of m. Moreover,

m can’t be the zero vector for nonresonant tori [57]. Therefore, it is highly likely that a

perturbed, nearly integrable, and periodic system is described by an invariant tori in phase

space [1].

Another way to describe the resonant tori, which helps to visualize it, is by winding
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number, σ . Figure 13 can help to visualize of the ratio of two frequencies, ν1 and ν2.

Assume ν1 is the frequency seen from top view, and ν2 is the frequency seen from cross

sectional view. If the winding number, σ = ν1/ν2, is a rational number, the tori associated

with this winding number are called resonant tori. The tori with irrational winding number,

σ , are called nonresonant tori. For nonresonant tori, “almost all” orbits are preserved

because “the KAM theory restore a measure of continuity to chaos” [50]. Figure 14, which

consists of two surface of section plots, represents what happens if a resonant torus breaks

up when a perturbation is introduced to the system. According to the Birkhoff’s theorem,

alternating elliptic and hyperbolic fixed points are formed when the resonant torus breaks

down. The two stable elliptic islands, which is represented by O, and the two unstable

hyperbolic points, which is represented by X , are shown in Figure 14.

2.14 KAM Theory Applications

After KAM theory was published, astronomers applied it to astronomical models be-

cause the motions in the solar system are comparatively bounded. However, application

of KAM theory to astronomical models didn’t yield promising results because of the lim-

itation on the size of the perturbation parameter, ε , which is the ratio of masses. In 1963,

Arnold endeavored to establish the existence of KAM tori for NBP, which he was partially

successful. The primary question was whether there were the initial position and velocities

of the bodies that keep the distance of the bodies from each other bounded for all the time

in the NBP [2]. A combination of KAM theory and computer-assisted techniques named

interval arithmetic, which is a computational technique that controls the errors introduced

by numerical computations in a special way, was successfully used to prove the existence

of KAM tori for the Restricted, Planar, Circular 3-Body Problem (RPC3BP) by Celletti and

others. In 1997, Celletti and Chierchia proved the existence of quasi-periodic tori with a

frequency close to the average frequency of Ceres for the Sun-Jupiter-Ceres problem [12].
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Locatelli and Giorgilli proved the existence of KAM tori describing the secular motions of

Jupiter and Saturn for the obserbed values of the parameters [48]. Celletti and Chierchia

investigated a truncated RPC3BP model for Sun, Jupiter, and Asteroid 12 Victoria. The in-

variant tori bounding the motion of Victoria was built successfully for the astronomic value

of the Jupiter-Sun mass ratio [13]. For further information, see a brief history of KAM tori

for NBP [14].

The numerical applications of KAM theory originated from Binney and Spergel’s pa-

per which spectra obtained from Fourier series of the coordinates of numerically integrated

orbits under the influence of galactic potentials can be expressed as sums of integer mul-

tiple of fundamental frequencies. Binney and others realized that orbits of N-dimensional

galaxies defined in phase space can be represented as N-tori [4, 6]. McGill and Binney de-

veloped a method to build tori for Hamiltonians including general gravitational potentials.

This method is based on the idea of distorting the analytic tori of a toy Hamiltonian into the

desired tori using generating functions [18, 6]. Binney and Kumar generalized the method

for obtaining the frequencies and angular variables related to the tori least-squares fitted to

any Hamiltonian [3, 6]. Kaasalainen and Binney further refined the torus-fitting process of

the method in order to include the case of non-rotating bar, which admits two major orbit

families instead of one [36, 6]. Kaasalainen and Binney introduced point transformations

into the method in order to solve the problem of a toy potential being too different from

its target potential [35, 6]. Then, Kaasalainen showed that the method can be applied to

globally chaotic regions as well [34, 6].

The only work related to this effort in terms of the application of KAM theory for ob-

jects orbiting Earth has been done by Wiesel and his masters and PhD students. Their

efforts are represented in a chronological order. Wiesel showed that Earth satellite orbits

under the full geopotential effect are likely to be KAM tori in a reference frame rotating

with Earth. First, he determined the frequencies of the orbit using a Laskar frequency

50



algorithm. Next, he obtained Fourier series coefficients from numerically integrated tra-

jectories. Then, He fitted numerically integrated orbit to the multiple Fourier series, which

defines the torus, using least squares fitting technique. The spectral analysis of almost

all orbits, excluding chaotic ones, yielded three basis frequencies. Moreover, Wiesel con-

cluded that other dynamical effects can be added as perturbations because of the single

point construction of the Hamilton-Jacobi separation of variables solution [65]. His next

paper related to the application of KAM torus theory to Earth satellites is the one that

compares two different KAM torus construction algorithms, which are the least squares

fitting of a KAM torus to a numerically integrated orbit and the extraction of the Fourier

coefficients of the KAM torus from numerically integrated Fourier transform. An efficient

KAM torus construction method, which yields the torus that passes through the given initial

conditions, is important for applications, such as formation flight of satellites, stationkeep-

ing satellite constellations, and compressing ephemeris data for navigational satellites [66].

Derbis tried to apply the KAM theory to precise satellite data from the GPS satellites. She

applied a Fast Fourier Transform (FFT) to obtain and identify discrete frequencies from

orbit data. However, some orbits showed inconsistencies related to their basis frequencies.

She concluded that the inconsistencies in the third frequency, ω3, which is the apsidal re-

gression rate, caused by the resonance in orbits of the GPS satellites [22]. Little tried to

build KAM tori from orbit data of the Gravity Recovery Climate Experiment (GRACE)

and Jason-1 satellites. He applied a modified Laskar Fourier transform algorithm to obtain

the basis frequencies of the orbits. Although the residuals of the KAM torus for Jason-1

satellite were as low as 1 km over a 30 day period, the KAM torus construction process

failed for GRACE satellite. Little concluded that air drag and errors related to Fourier

coefficients resulted in the poor results for GRACE satellite. Craft investigated the appli-

cability of the KAM theory for the satellite formation flight in the full geopotential with an

order and degree of 20. The KAM torus method yielded promising results for the satellite
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formation flight applications. Orbits of satellite clusters provided with drift rates in the

nanometer to micrometer range over 60 day integration interval when they were separated

by 10 to 100 meters [20]. Bordner tried to apply the KAM theory to the GPS satellite

orbits. His research questions were whether the KAM theory can increase the accuracy

of GPS satellites and whether it can reduce the burden on GPS operations. However, the

methods for constructing KAM tori failed to yield desired accuracy for operational GPS or-

bits. He suggested that improved methods are needed to deal with complexities related to

the maneuvering operational satellites [6]. Wiesel’s third paper related to the KAM theory

compared the KAM tori built from 2BP, SGP4 model, and numerically integrated orbit with

a degree and order of 20. He showed that a KAM torus is similar to a full analytic perturba-

tion theory in many ways. However, for a KAM torus, frequencies aren’t approximations

of the perturbation series expansions, and the torus is built numerically. Moreover, the

comparison of numerical integration and the KAM torus, which yielded residuals smaller

than 4 m over 10 years, showed that trajectories in the full geopotential are KAM tori [68].

Yates investigated the motion near a reference torus in order to compensate for errors in the

reference KAM torus due to dissipative forces, such as air drag, lunar/solar mass effects.

He suggested that routine phase angle updates and stochastic offsets to the reference torus

can improve the accuracy of the KAM torus perturbed by dissipative forces. He showed

that most stochastic effects can be modeled to predict the motion near a reference torus.

Moreover, the low eccentricity of International Space Station (ISS) is proved to be a big

hurdle in estimating the torus coordinate offsets [70]. Hagen studied the effects of air drag

and lunar mass perturbations on a reference KAM torus. He showed that the KAM theory

is also applicable when air drag and lunar mass perturbations are included in the system.

However, it is proved that an accurate Jacobian, which performs the linear transformation,

is of great importance, and Jacobian is only valid when the reference torus coordinates

are tightly aligned with the perturbed torus coordinates [30]. This effort includes air drag
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as perturbations to the reference KAM torus. Frey studied feasibility of constructing the

KAM torus using TLE and SGP4. Frey’s work, in a sense, proved that the KAM torus

can be constructed from observational data. Two of his test cases, which are the two Delta

rocket bodies, failed due to air drag and inaccuracies of the TLE data. The other two test

cases, which are the Hubble Space Telescope (HST) and the Thor rocket body, showed

that it is possible to extract accurate KAM torus basis frequencies although they suffered

from their small eccentricities. Frey concluded that small eccentricities can’t be modeled

with a modified Laskar frequency algorithm developed by Wiesel [28]. This effort uses a

different method which builds the reference KAM torus for orbits with low eccentricities

using periodic orbits and Floquet theory.

This effort is based on Wiesel’s recent paper, “A Theory of Low Eccentricity Earth

Satellite Motion”, and it builds on the results of previous efforts related to the application

of KAM theory to Earth orbiting satellites. Wiesel considered the Earth satellite motion

in terms of periodic orbits and Floquet theory. Periodic orbits in the zonal potential are

known to be nearly circular, excluding the ones with critical inclination [58]. The main

advantage of applying this method is that perturbations are in the order of 10−5 instead of

10−3 because periodic orbits includes the effects of the Earth’s oblateness. The perturba-

tions caused by sectoral and tesseral potential terms, air drag, and third body mass effects

can be added to the periodic orbit. The current method is a hybrid of numerical and an-

alytic methods. It has numerical sets of algorithms that may match numerical integration

in their accuracy. Moreover, Once the theory files are constructed, which takes approxi-

mately 1 minute per orbit, it has the the usual advantages of general perturbations because

it provides the results at the time of interest without having to perform a long propagation

[69].
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2.15 Summary

Space surveillance systems are under great stress due to the number of objects orbiting

the Earth. Current launch rates and operational lifetimes of current satellites show that

space surveillance systems need to cope with more objects soon. The increase in the spatial

density of debris leads to an increase in the probability of collision. Figure 15 represents

the growth of the cataloged satellite population during the past 15 years. Therefore, a new

method which is as accurate as numerical methods and as fast as analytical methods is

needed. The KAM theory for Earth orbiting objects yield promising results specifically

for space debris because they are non-maneuverable,and lightly perturbed. Once a KAM

torus is built for a non-maneuverable object, its motion will be bounded by the torus until

a dissipative force affects its motion. Formation flight of satellites is another potential

application of the KAM tori. Craft showed that tight formations yield secular drift rates

between satellites from 4 nanometers to 1 micrometer per second [20]. Moreover, The

KAM tori can reduce the operational burdens of GPS because the ephemerides provided by

the orbital tori will have a much longer useful life [6]. Indeed, the KAM tori has numerous

potential applications because they provide accurate predictions with long lasting validity

for the time of interest as fast as an analytic method can provide. However, computationally

expensive long integrations for building a torus, and perturbations that shift a reference

torus to the nearby torus have been the main problems for the theory. Hopefully, this

effort mostly overcomes these issues and the KAM torus orbit determination will serve as

a prelude to converting the TLE catalog.
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Figure 15. The Growth of the Cataloged Satellite Population over 15 Years [55]
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III. Methodology

This chapter describes the data, the method, and the analytic process used to perform

this study. This effort is intended for small eccentric orbits, which were one of the main

issues for the KAM torus construction process for the previous efforts. Although this effort

has been built on the previous works, it introduces a completely new method for construct-

ing the KAM torus, which was developed and coded by Wiesel. In addition, the new theory

is a complete orbit determination method which retrieves the TLE data for two months from

www.space-track.com servers, propagates each TLE for one orbit, build the KAM torus

theory file using some of the SGP4 mean elements, and fits the low eccentricity KAM torus

to the SGP4 and TLE predictions using least squares without human intervention. Although

converting whole TLE catalog to the new method is a trivial task, it requires at least 30 days

of computation time. Therefore, the author pseudo-randomly chose 1500 objects from the

NORAD satellite catalog for analysis. This chapter can simply be divided into four dis-

tinct parts. The first part, Section 3.1, discusses the data gathering, SGP4 propagation, and

contains a quick overview of the whole process. The second part includes all sections from

Section 3.2 to Section 3.6, which can be conveniently named as the KAM theory building

part. The third part, starting in Section 3.7, introduces the evolutionary steps to the desired

KAM torus by differential correcting the initial conditions and the frequencies of the newly

built torus using SGP4 and TLE data. The fourth part is a summary.

3.1 Data Gathering and Overview of the Method

This effort uses the TLE obtained from the website www.space-track.org. This site

allows users to download the TLE of most satellites. The previous work by Wiesel and oth-

ers showed that there are some properties of satellites which cause difficulties in KAM tori

construction process. The author also made an initial test in order to define an optimal ec-
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centricity threshold level because this effort is intended for low eccentric orbits. Although

the author defined an eccentricity of 10−3 and small as optimal eccentricity for the pro-

gram to converge, he will further analyze the highest limit for the eccentricity to converge

by modifying the code. It is also known that there are no nearly circular periodic orbits in

the close vicinity of the critical inclination, which is 63.435◦, or the complementary angle

of 116.565◦ [58]. Although there exist periodic orbits for polar orbits, the close vicinity

of polar orbits is avoided because of numerically unstable Legendre polynomial recursions

for the gravitational potential calculations. The correction is left for future studies. An

altitude of 300 km and more is chosen as a criterion because air drag shrinks the size of the

torus down in phase space. It is also known that orbital maneuvers destroy the KAM torus,

but they are not listed as a criterion because maneuvers are unpredictable. Table 8 shows

known issues in the previous works and the selection criteria of test objects for avoiding

these issues.

Table 8. Test Case Selection Criteria

Issues Test Case Selection Criteria
Air Drag Objects which have altitute of 300

kilometers and more
Resonance Objects with periods that are not

nearly an integer multiple of Earth’s
rotational period

Critical inclination and
Polar Orbits

Objects which have inclinations that
aren’t in the close vicinity of the criti-
cal and polar inclinations.
(0◦ ≤ i ≤ 60◦ and 67◦ ≤ i ≤ 87◦ and
93◦ ≤ i≤ 113◦ and 119◦ ≤ i < 180◦)

There are 7,938 space objects which match the criteria in Table 8. The author wrote a

C++ script which retrieves 7,938 TLEs for a period of 2 months ,which is between Jan 1,

2013 and March 1, 2013, from www.space-track.org server. This script also prepares

essential input files that are required by low eccentricity KAM torus construction program,
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Figure 16. The Orbit of Toris 1 Satellite over 2 Months

which can be conveniently named as theory building program. The solar activity is rela-

tively low between the selected dates. The dates for solar minimum can be selected, but

the author intended to analyse the recently launched satellites as well. Then, 1500 TLEs

are pseudo-randomly selected, and propagated for an orbit for a period of 2 months by

Vallado’s revised SGP4 code [21]. Figure 16 shows the orbit of TORIS 1 satellite over two

months, which is simply a torus shape. TLEs are propagated for an orbit period because it

is known that the position errors are smallest some point within the data interval and grows

with respect to time going outwards into the future, or back into the past [67]. It is also

desirable that JSpOC releases the TLE with an epoch time within data interval. JSpOC

fits the orbits for 3 to 4 days for LEO satellites and a couple of weeks for higher altitude

satellites. Therefore, there is a progression of orbits, and that progression includes more

information than each individual orbit has. The idea behind propagating each TLE for a 2

months orbit is to obtain more accuracy through combining smaller chunks of less accurate

propagation data. Because SGP4 and TLE prediction data are considered observational

data, data from the calculation of dynamics are needed, which will be combined to form

an estimate. The low eccentricity KAM torus provides the dynamical data. The low ec-

centricity KAM torus construction starts with the calculation of the periodic orbit, which

is basically a boundary value problem. Once the periodic orbit is built, it is transformed

to Fourier series [23]. The solution for the periodic orbit in the zonal potential problem
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yields two basis frequencies, which are the Keplerian frequency and the nodal regression

rate. The other missing frequency, which is the advance of the argument of perigee rate,

can be obtained from the Floquet solution of the periodic orbit. The Floquet solution also

yields two time linear terms due to adjacent periodic orbits. The solution includes only

the zonal potential so far. However, perturbations, which are air drag, and sectoral and

tesseral harmonics perturbations, are added to the Floquet solution. Therefore, the problem

becomes forced linear system problem. The order of perturbations suddenly drops from

10−3 to 10−6, which satisfies the main dictate of KAM theorem of small perturbations bet-

ter. In addition, the momenta are inertial velocity components defined in a rotating frame

of reference because of the set up of the dynamics. Therefore, simply substituting veloc-

ity components with momenta is a valid approach, see Section 3.2. Indeed, defining the

forcing function as a function of Q1 and Q2 in a reference frame that rotates with Earth

where sectoral and tesseral perturbations are stationary leads to the usual set up of the fun-

damental equation for the KAM theorem, see Equation 86. After the low eccentricity KAM

torus is built, it is fitted to the observational data acquired from SGP4 and TLE prediction.

Non-linear least square algorithm is used to form an estimate. The modal variables and the

frequencies of the periodic orbit are updated for each iteration, see Section 3.7. Although,

the author represents the process piece by piece, each main program is connected to another

by GNU/Linux bash files, which are batch files for MS-DOS environment. Therefore, it is

a simple matter to switch different parameters, such as air drag, and sectoral and tesseral

perturbations, on and off. Moreover, human intervention is not required during the pro-

cess due to the bash files which orchestrate the whole orbit determination procedure. This

method is a numerically constructed perturbation theory which uses periodic orbits under

the influence of only the zonal potential as the starting point [69].
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3.2 Satellite Dynamics

This effort uses different reference frames, such as rotating and inertial frames of refer-

ence. The inertial reference frame is the ECI frame, and the rotating frames have rotation

rates , ω = Ω̇ where the frame of reference is tied to the regression of the ascending node,

or ω = ω⊕ where it is tied to Greenwich. In such a rotating frame of reference the inertial

velocity vector becomes [69]:

v = ṙ =


ẋ−ωy

ẏ+ωx

ż

 , (96)

where ω appears in the components of the inertial velocity because of transport theorem.

Then the satellite’s kinetic energy becomes [69]:

T =
1
2
(
(ẋ−ωy)2 +(ẏ+ωx)2 +(ż)2) (97)

The generalized momenta can be found from the canonical Hamilton equations, pi =

∂T/∂ q̇i, as [69]:

px = ẋ−ωy

py = ẏ+ωx

pz = ż

(98)
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where the generalized momenta are the inertial velocity components. Then, the Hamilto-

nian can be calculated from H = ∑i piq̇−T +V as [69]:

H =
1
2
(p2

x + p2
y + p2

z )+ω(ypx− xpy)

− µ

r

∞

∑
n=0

∞

∑
m=0

(
r

R⊕

)−n

Pm
n (sin δ )

× (Cnm cos mλ +Snm sin mλ )

(99)

where µ is the Earth’s gravitational parameter, R⊕ is the radius of Earth at the equator, and

Cnm, Snm are the geopotential coefficients. This effort uses NASA EGM-96 gravity model

with an order and degree of 20. The relationship between rectangular coordinates and the

radius, r, the latitude, δ , the longitude, λ , can be shown as [69]:

r =
√

x2 + y2 + z2

sin δ =
z√

x2 + y2

tan λ =
y
x

(100)

where the rectangular coordinates are in a reference frame tied to the Greenwich, which

is the Greenwich referenced ECR frame, see Section 2.4. The expansion of the geopo-

tential in the zonal harmonics, which is m = 0, is used for constructing the periodic orbit.

The sectoral and tesseral harmonics are added as perturbations to the periodic orbit. The

Hamilton’s equations can be represented as [69]:

Ẋ = Z
∂H
∂X

, (101)

where X is the physical state vector, XT =
{

x,y,z, px, py, pz
}

, and Z is a 2n× 2n matrix,

where n is the number of coordinates, that conveniently arranges the Hamilton’s equations
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in vector form as [69]:

Ẋ =



ẋ

ẏ

ż

ṗx

ṗy

ṗz



=

 0 I

−I 0

 ·


∂H
∂qi

∂H
∂ pi

=



∂H
∂ px

∂H
∂ py

∂H
∂ pz

−∂H
∂x

−∂H
∂y

−∂H
∂ z



(102)

The linearization of the Hamilton’s equations is needed because this effort is an estimation

problem. The equations of variation can be represented as [69]:

ẋ = Z
∂ 2H
∂X2 = Ax, (103)

where x is represented as small changes to the physical state vector X.

Air drag perturbations are also added to the the combination periodic orbit and the

Floquet solution. The momenta are inertial velocity components. Therefore, air drag ac-

celeration can be represented as [69]:

adrag =−
1
2

CdAρo

m
ρ

ρo

√
p2

x + p2
y + p2

z p

=−B∗
ρ

ρo

√
p2

x + p2
y + p2

z p
(104)

where B∗ is another measure for the susceptibility of a satellite to air drag , m is the satellite

mass, and ρ is the atmospheric density at perigee. [60]. For further information, see

Equation 84.
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Figure 17. The Earth’s Zonal Gravity Potential

3.3 Periodic Orbits

The periodic orbit and Floquet theory are used as starting point for calculating the

perturbations because the previous KAM torus construction methods failed for low eccen-

tricity orbits and the periodic orbit resides at the core of the torus. The modified Laskar

algorithm, developed by Wiesel, is one of the KAM torus construction methods. It yields

three basis frequencies for orbits by Fourier series spectral analysis. The low eccentricities

are hard to be detected for methods like Laskar frequency analysis method, which requires

high eccentricities that cause more dramatic change in the frequency spectrum of the orbit.

Although this fact is a disadvantage for the previous KAM torus construction methods, it is

favorable for this effort because the structure lies at the core of the torus is a periodic orbit.

In 1960’s, the periodic orbits were studied extensively because they are more realistic

than 2BP, which describes every orbit periodic. The Newtonian point mass plus the zonal

harmonics terms lead to the periodic orbit because the zonal potential about polar axis is

symmetric. Figure 17 represents the symmetry of the Earth’s zonal potential about polar

axis. Nearly circular orbits are periodic orbits in the Earth’s zonal gravity potential for

every inclination, except in the close vicinity of the critical inclination [58]. The periodic

orbits are closely related to the frozen orbits, which have nearly stationary eccentricity
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Figure 18. The Regression of Orbit Plane in the Zonal Gravity Potential

and argument of perigee. The repeated ground tracks are of great importance for mission

planning. The periodic orbits defined in a reference frame tied to the rotating Earth have

repeated ground tracks. Therefore, the periodic orbits have been studied as frozen orbits

as well [44, 43]. It has been shown that nearly circular orbits are unstable at the criti-

cal inclination, and the periodic orbits in the vicinity of the critical inclination have high

eccentricities [17]. The numerical proof of the existence of periodic orbits with high ec-

centricities has been done by Broucke [8]. Moreover, Wiesel has developed a new relative

motion solution for satellites using the low eccentricity periodic orbits, but their potential

use for orbit determination hasn’t been explored until he uses the low eccentricity periodic

orbits to construct the low eccentricity KAM torus [69].

In the zonal problem, there are periodic orbits. However, there are a few difficulties in

building the periodic orbit. It is known that there are two non-zero frequencies, which are

the Keplerian frequency and the regression of the node. These frequencies aren’t known.

The periodic orbit precesses at a certain rate which can only be determined when it fin-

ishes its motion for one period, and the orbits aren’t periodic in inertial space. Therefore,

defining the periodic orbit in a reference frame that rotates with the node is required. Fig-
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ure 18 represents the regression of orbit plane under the influence of zonal potential. The

periodicity condition needs to be set up in such a way that the nodal regression rate of the

orbit plane is not needed. Therefore, the initial conditions are defined with position vector,

r = {xo,0,0}, and momentum vector, p = {ẋo,vocos io,vosin io}. The orbital period, τ , and

inclination, i, define the orbit, while the unknowns are ΞT = {xo, ẋo,vo}. Because Earth

doesn’t have North/South symmetry, ẋo is required as a component of the momentum vec-

tor, p. The orbit becomes periodic if the 3 conditions after one revolution, τ , are set up as

[69]:

G =


z(τ)

r(τ) ·p(τ)− xoẋo

r(τ) · r(τ)− x2
o

= 0, (105)

where the conditions dictate the satellite to cross the equatorial plane, z(τ) = 0, to have

the same radial velocity as at the beginning, r(τ) ·p(τ)− xoẋo = 0, and to be at the same

distance from Earth as at the beginning. The actual orbit precession isn’t known, but can

be calculates as [69]:

Ω̇ =
1
τ

cos−1 r(τ) · r(0)
|r(τ)| |r(0)|

=
1
τ

cos−1 x(τ)
x(0)

(106)

A linearization of Equation 105 using Taylor’s series expansion is required to obtain

the periodic orbit [69]:

G = G(Ξ)+
∂G
∂Ξ

δΞ = 0 (107)

The expansion using the state transition matrix Φ(τ,0) , which is calculated from parallel

numerical integration with the trajectory, yields the derivative matrix of G [69]:

∂G
∂Ξ

=
∂G

∂X(τ)

∂X(τ)

∂Ξ
+

∂G
∂X(0)

∂X(0)
∂Ξ

=

(
∂G

∂X(τ)
Φ(τ,0)+

∂G
∂X(0)

)
∂X(0)

∂Ξ

(108)
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where Φ(τ,0) can be calculated from ∂X(τ)/∂X(0). The partial derivatives in the Equa-

tion 107 can be computed as [69]:

∂G
∂X(τ)

=


0 0 1 0 0 0

ẋ ẏ ż x y z

2x 2y 2z 0 0 0


∂G

∂X(0)
=


0 0 0 0 0 0

−ẋo 0 0 −xo 0 0

−2xo 0 0 0 0 0


∂X(0)

∂Ξ
=


1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 cos io sin io



T

(109)

Then, the initial condition parameter vector, Ξ, can be corrected by the correction, δΞ,

which can be calculated by Equation 107 [69].

After the periodic orbit is built, it is represented as a Fourier series by harmonic analysis

[23]. Figure 19 shows the representation of the periodic orbit by two angle variables. In

Figure 19, Q1 is ”mean argument of latitude analogue”, and Q2 is regression of the right

ascension of ascending node. Q1 and Q2 are the physical coordinates of the KAM torus

[69] :

Q1 = M+Ω, (110)

Q2 = Ω−θg, (111)

where M is mean anomaly, Ω is right ascension of ascending node, and θg is angle between

the vernal equinox and the prime meridian. The periodic orbit is a function of only Q1 in a

frame of reference, which is the ECNF frame, see Section 2.4, that rotates with the ascend-
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Figure 19. The Representation of the Periodic Orbit by Angle Variables

ing node. The nodal orbital frequency, ω1, and the inertial nodal regression rate, ω2, can

be obtained from the Fourier series. These Fourier series store only the coordinates, ξ ,η ,

and ζ , because the momenta can be obtained by the kinematic relations in Equation 98.

Moreover, it is a simple matter to generalize from ECEF frame to ECI or ECEF frames

because the zonal potential is symmetric about polar axis. The inertial nodal regression

rate, ω2, needs to be updated to define the regression rate with respect to the Greenwich.

Equation 112 represents that the periodic orbit defined in ECNF frame, where the periodic

orbit, X, is a function of only Q1, can be transformed to ECI or ECEF frame with a double

rotation matrix about the z axis by the nodal angle Q2 [69]:

XECEF(Q1,Q2) =

 Rz(−Q2) 0

0 Rz(−Q2)

XECNF(Q1) (112)

Equation 112 can also be used when the desired reference frame is ECI instead of ECEF

with small modifications. Both Q2 in the equation are substituted by the usual initial frame

node, Ω, and ω2 is reduced by the Earth’s rotation to transform the periodic orbit, X, from

ECNF frame to ECI frame. Although the two frequencies have been obtained from the

periodic orbit, the third frequency is required for the solution.
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3.4 Floquet Solution

Periodic orbits plus the Floquet solution provides a method that numerically solves dy-

namical problems which don’t have closed form solution. The linearization of the periodic

orbit describes the behaviour of the system near the periodic orbit. Linearizing about the

periodic orbit results in a linearization problem [64]:

ẋ = A(t)x, (113)

where x is the first order displacements from the state X . Equation 113 is a time periodic

linear differential equations. The solution to time periodic linear differential equations

yields stability information of periodic orbits. The solution to the Equation 113 can be

obtained as [64]:

Φ(t, to) = E(t)exp(J(t− to))E−1(to), (114)

where E is a periodic matrix, J is a matrix of system frequencies in the Jordan normal form.

The system frequencies are also called Poincaré exponents.

The Floquet solution can be obtained by calculating the Jordan normal form, J, and the

periodic matrix, E, over one period. Over one period, Equation 114 becomes [64]:

Φ(t,0) = E(t)exp(Jt)E−1(0), (115)

where E(t) = E(0) because E is periodic. Figure 20 represents the visual depiction of

E periodic matrix. Geometrically, defining E(t) = E(0) puts a sets of coordinates on the

periodic orbit, and they follow the trajectory by rotating around themselves. At the end

these sets of coordinates smoothly join themselves. Φ is the state transition matrix over a

period. Indeed, because the system is periodic, we have Φ for all time. The Φ matrix is

called monodromy matrix. The eigenvalues and eigenvectors of the Φ matrix can be found
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Figure 20. E Periodic Matrix

by rearranging Equation 114 [64]:

E(0)−1
Φ(t,0)E(0) = eJt , (116)

where the exponential of the Jordan form ,J, is the eigenvalue matrix of Φ. E periodic

matrix yields the eigenvalues of the Φ matrix. If λi are eigenvalues of the monodromy

matrix, Equation 116 becomes [64]:

λi = eωit

ωi =
1
t

ln λi

(117)

where ωi are the system frequencies, which are also called Poincaré exponents. The inter-

pretation of the Poincaré exponents is similar to the eigenvalues of a constant coefficient

system. For Hamiltonian systems without dissipation, the frequencies must be a pair of

positive / negative real numbers or a pair of a pair of imaginary numbers. As an exception,

when λi = 0, there is a repeated value of ωi = 0. Repeated roots in linear systems lead to

off-diagonal time terms. These pair of zeros are called a degenerate mode. For this effort,

the Hamiltonian has two integrals of the motion, which are the Hamiltonian itself , and the

z component of the angular momentum. Because each of these pair of zeros correspond

to one integral of motion, this effort has two degenerate modes. Each degenerate mode

involves a static displacement and a linear drift is associate momentum is not zero. These
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static displacements can occur either along the orbit or around the polar axis. These two

degenerate modes correspond to two frequencies. The third frequency is the free eccen-

tricity of the orbit, which is a pair of imaginary frequencies by the eigenvalue calculation,

because the imaginary part of ωi is the oscillatory frequency of the mode i. For this effort,

the oscillatory frequency is ±ω3 with algebraic sign that depends on the inclination. As a

result, the calculation of eigenvalues yields the complete linear stability information of the

periodic orbit [64, 69].

The calculation of eigenvector yields E(t) over one period, which can be used to trans-

form from physical variables to model variables. The eigenvalue problem for equation is

highly singular, and a special treatment is required. The differentiation of the state transi-

tion matrix becomes [63]:

Φ̇(t, to) = Ė(t)eJ(t−to)E−1(to)+E(t)JeJ(t−to)E−1(to) (118)

By substituting into Equation 119 :

Φ̇(t, to) = A(t)Φ(t, to) (119)

A differential equation for F(t) becomes:

Ė(t)eJ(t−to)E−1(to)+E(t)JeJ(t−to)E−1(to) = A(t)E(t)exp(J(t− to))E−1(to)

Ė(t)+E(t)J = A(t)E(t)

Ė = AE−EJ

(120)

Since E(0) is obtained from the periodic orbit, solving Equation 120 from t = 0 to t yields

F(t) over one period. E(t) periodic matrix is reduced to Fourier series [23]. For this effort,

the periodic matrix is a function of Q1, E(Q1).

The transformation from physical coordinates to modal variables is possible because
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F(t) periodic matrix is calculated. Assuming y is the modal variable [63]:

y = E−1(t)x (121)

By substituting into Equation 122 :

x(t) = φ(t, to)x(to) (122)

The Floquet solution represented in modal variables becomes :

Table 9. Analogous of Modal Variables

Modal
Variables

Analogous of Modal Variables

y1 a displacement along the argument of latitude di-
rection, Q1.

y2 a change in the momentum which is analogous to
the Delaunay momentum, L.

y3 an offset in the nodal variable, Q2.
y4 a change in the z component of orbital angular mo-

mentum.
y5 ecos ω

y6 esin ω

x(t) = E(t)eJ(t−to)E−1(to)x(to)

E−1(t)x(t) = eJ(t−to)E−1(to)x(to)

y(t) = eJ(t−to)y(to)

(123)

Equation 123 is a solution to the linear system to the form [69]:

ẏ = Jy (124)
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The Floquet solution can be added to the periodic orbit solution as :

XECR = Rz(−Q2){XPO(Q1)+E(Q1)exp(J(t− to))y(to)} , (125)

where double z rotation is represented as Rz, the nodal frame periodic orbit series are shown

as (X)PO. The modal variables , y1 and y2, are local versions of the global angles , Q1 and

Q2, and they are scaled to suit this purpose. The Jordan form matrix becomes :

exp(J(t− to)) =



1 t− to 0 0 0 0

0 1 0 0 0 0

0 0 1 t− to 0 0

0 0 0 1 0 0

0 0 0 0 cos Q3 sin Q3

0 0 0 0 −sin Q3 cos Q3



(126)

The modal variables are analogous to 6 orbital elements that can be used to represent

nearby motion. Table 9 represents an analogy between modal variables and miscellaneous

orbital elements. The global variables, Q1 and Q2, should be freely traded with the modal

variables, y1 and y3, because this will keep them from growing unboundedly [69].

3.5 First-Order Perturbations

The periodic orbit and its Floquet solution has been obtained from Equation 125. This

solution has the Newtonian term and all of the zonal gravity harmonics. The perturbations

start approximately on the order of 10−5 instead of 10−3, which is advantageous because

errors originated from the calculation of perturbations are less influential. However, the

method for calculating first-order perturbations can be extended to higher order perturba-

tions. This effort includes only sectoral and tesseral harmonics and air drag. However, the
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exact same method applies to lunar and solar mass perturbations by including at least one

extra angle in the Fourier series which describes the motion of the Moon or the Sun with

respect to Earth in a frame that rotates with it. The perturbing force, Ẋpert , can be added to

Equation 113 as [69]:

ẋ = Ax+ Ẋpert (127)

The perturbing acceleration can be expanded about the periodic orbit because this is a

forced linear system [69]:

Ẋpert ≈ Ẋpert
∣∣
XPO

+
∂Xpert

∂X

∣∣∣∣
XPO

x+ ...

= Ẋpert
∣∣
XPO

+
∂Xpert

∂X

∣∣∣∣
XPO

Ey+ ...

(128)

The first-order perturbations can be added to the Floquet solution by Equation 124 as

[69]:

ẏ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 ω3

0 0 0 0 −ω3 0



y+E−1Ẋpert , (129)

where for sectoral and tesseral perturbations, the trailing term, E−1Ẋpert , is a function of

the global variables, Q1 and Q2. The forcing term can be transformed to a double Fourier

series in these angles. This applies to air drag as well. However, the air drag forcing term

is a function of only one global variable, Q1.

For the first-order perturbations, a perturbing acceleration transformed to the modal

variables is decoupled. Two different terms, which are the constant and periodic Fourier

series terms, are examined for the perturbing acceleration as the response to the oscilla-
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tory and the two degenerate modes. Each factor is evaluated separately. A constant solu-

tion is obtained from the constant terms in the Fourier series for the oscillatory mode by

Equation129 as [69]:

 ẏ5

ẏ6

=

 0

0

=

 0 ω3

−ω3 0


 y5

y6

+

 c5

c6

 (130)

Then, the solution to the Equation 130 becomes [69]:

 y5

y6

=

 c6/ω3

−c5/ω3

 (131)

These terms can’t be ignored because ω3 is a small number for the most part. The modal

variables, y1 and y2, don’t become infinite near the periodic orbit, which has zero eccen-

tricity for this effort, because they are analogous to the quantities, ecos ω and esin ω , in

the 2BP. The constant terms in the Fourier series for one of the degenerate modes doesn’t

yield a constant solution [69]:

 ẏ1

ẏ2

=

 0 1

0 0


 y1

y2

+

 c1

c2

 (132)

Then, the solution becomes:

 y1

y2

=

 (c1− y2(to))(t− to)+ 1
2c2(t2− t2

o)

c2t− y2(to)

 , (133)

where the solution for ẏ2 = c2 is written at the start time because the other secular terms,

which appear due to the periodic perturbations in y2, can be absorbed. The solution for y1

has been obtained by substituting y2 into y1. Equation 133 represents that y1 and y2 could
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have quadratic terms, and y2 and y4 could have a linear rate of change. When there is no

dissipative force in the system, c2 should be zero, and a quadratic term isn’t expected for in-

track and nodal perturbation. For air drag perturbation, quadratic behavior is expected.y1

and y2 can be observed by their associated global variables because the modal variables

aren’t scaled. The exact same approach is taken for periodic Fourier terms.

The periodic terms in the Fourier series for a degenerate mode yields the forced linear

system as[69]:

 ẏ1

ẏ2

=

 0 1

0 0


 y1

y2


+

 c1 cos(n1Q1 +n2Q2)+ s1 sin(n1Q1 +n2Q2)

c2 cos(n1Q1 +n2Q2)+ s2 sin(n1Q1 +n2Q2)


(134)

where the setup is for sectoral and tesseral harmonics, but if a perturbation requires it,

an additional angle can be introduced. In the equation, n1 and n2 are integers, and wp =

n1ω1 +n2ω2. The solution for y2 can be calculated [69]:

y2(t) = (
c2

ωp
sin(n1Q1 +n2Q2)−

s2

ωp
cos(n1Q1 +n2Q2))

∣∣∣∣t
to

(135)

Then, substituting into the y1 yields :

y1(t) =

{
(

c1

ωp
− s2

ω2
p
) sin(n1Q1 +n2Q2)− (

s1

ωp
− c2

ω2 ) cos(n1Q1 +n2Q2)

}∣∣∣∣∣
t

to

− (
c2

ωp
sin(n1Q1 +n2Q2)−

s2

ωp
cos(n1Q1 +n2Q2))

∣∣∣∣t
to

(136)

where the constant terms in the y2 solution lead to time dependent terms in the solution

for y1. However, the secular terms introduced by the constant terms in the y2 solution has

already been absorbed into the solution provided by Equation 133.
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The remaining forced linear system is due to the periodic terms in the oscillatory mode.

Equation 137 represents the forced linear system [69]:

 ẏ5

ẏ6

=

 0 ω3

−ω3 0


 y5

y6


+

 c5 cos(n1Q1 +n2Q2)+ s5 sin(n1Q1 +n2Q2)

c6 cos(n1Q1 +n2Q2)+ s6 sin(n1Q1 +n2Q2)


(137)

Let both a forced solution and the perturbation term has the same form:

 y5

y6

=

 α5 cos(n1Q1 +n2Q2)+β5 sin(n1Q1 +n2Q2)

α6 cos(n1Q1 +n2Q2)+β6 sin(n1Q1 +n2Q2)

 (138)

After inserting assumed solution and simplifying it, the solution becomes a set of linear

equations for the forcing coefficients as:

α5 =
c6ω3 + s5ωp

ω2
3 −ω2

p
, β5 =

s6ω3− c5ωp

ω2
3 −ω2

p

α6 =
−c5ω3 + s6ωp

ω2
3 −ω2

p
, β6 =

−s5ω3− c6ωp

ω2
3 −ω2

p

(139)

Once the perturbing Fourier series is obtained, it is converted to the perturbation solution,

and stored. This method can be applied to any other perturbations with simple modifica-

tions, and the code written for this method requires only the new data file and truncation

level associated with the perturbation. It should be noted that Equation 139 includes the

expected small divisors problem, which will lead to problems near the resonance.

Equation 125 can be modified to include the first-order perturbations as[69]:

XECR = Rz(−Q2)
{

XPO(Q1)+E(Q1)
[
exp(J(t− to))y f ree(to)+ y f orced

]}
, (140)

76



where the modal variables from the Floquet solution is represented by y f ree, and the per-

turbed solution is denoted by y f orced . The perturbed solution, y f orced , can be a function of

different angles, depending on the perturbation.

3.6 Second-Order Eccentricity Perturbations

The modal variables, y1 and y3, are necessary for fitting orbit and for small perturba-

tions. The global angles Q1 and Q2 absorb the large changes. Moreover, secular terms may

be absorbed in their frequencies, ω1 and ω2. However, the expansion of the torus along, y5

and y6, which describe the eccentricity and argument of perigee states, is necessary because

not all orbits have small enough eccentricities. The equation for the expansion of the two

model variables, y5 and y6, when setting the other model variables approximately zero in

physical variables becomes [69]:

ẋi = Ziα
∂ 2H

∂Xα∂Xβ

∣∣∣∣
XPO

xβ +
1
2

Ziα
∂ 3H

∂Xα∂Xβ ∂Xγ

∣∣∣∣
XPO

xβ xγ + ...

= Aiα(Q1)xα +
1
2

Biαβ (Q1)xαxβ

(141)

where Z is the symplectic matrix, i = (1...6) for this specific case, the linear, time varying

differential equations are the equations of variation. Representing the equation in the modal

variables, Equation 141 becomes:

ẏi = Jiαyα +
1
2

E−1
iα BαβγEβδ Eγεyδ yε + ...

= Jiαyα +
1
2

B′iαβ
yαyβ + ...

(142)

where B′i jk, the periodic orbit, and the E matrix are periodic functions of Q1. The quadratic

matrix, B′i jk with y5 and y6 portion in the final two indices yields a periodic six by two by

two tensor [69].

Assuming all model variables are zero except the eccentricity mode, the linear matrix
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becomes:

J =

 0 ω3

−ω3 0

 (143)

Then, the linear solution can easily be obtained as:

y(t) = Φ(t, to)y(to) =

 cosω3(t− to) sinω3(t− to)

−sinω3(t− to) cosω3(t− to)

y(to) (144)

If the quadratic terms in the Equation 142 is small enough, the first order solution, y(t) =

Φ(t, to)y(to), can be used for the equation as:

ẏi = Jiαyα +
1
2

B′iαβ
ΦαγΦβδ yγ(0)yδ (to)

= Jiαyα +
1
2

B”iαβ yα(to)yβ (to)
(145)

where B” is a function of both Q1 and Q3 = ω3(t− to). The solution to Equation 145 is

assumed to be generalized as [69]:

yi(t) = Φ
(1)
to yα(to)+

1
2

Φ
(2)
iαβ

yα(to)yβ (to)+ ... , (146)

where Φ(1)(to, to) = I,as it is in the classical linear system theory, and Φ(2)(to, to) = 0 be-

cause the initial conditions, yi(to), need to be preserved. Therefore, the time derivative

of Equation 146 can easily be calculated because yi(to) are constant. Inserting the time

derivative in the form of the modal differential Equation 145 yields [69]:

ẏi = Φ̇
(1)
to yα(to)+

1
2

Φ̇
(2)
iαβ

yα(to)yβ (to)+ ...

= Jiβ Φ
(1)
βα

yα(to)+
1
2

JiγΦ
(2)
γαβ

yα(to)yβ (to)

+
1
2

B”iαβ yα(to)yβ (to)

(147)
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where the arbitrary indices are for a uniformity requirement in the initial conditions. The

first order state transition matrix differential equation can be obtained as [69]:

Φ̇
(1)
i j = Jiβ Φ

(1)
β j (148)

Then, the new result in the second order becomes:

Φ̇
(2)
i jk = JiγΦ

(2)
γ jk +B”i jk, (149)

where it is already known that Φ
(2)
i jk (to, to) = 0. The solution for Equation 149 has been

provided for the constant terms in the Fourier series of B” by Equation 131 and by Equa-

tion 139 for the periodic terms. If indices j and k are constant, the solution to the system

will be same as the first order case. Therefore, Φ(2) will be a periodic function of the global

variables, Q1 and Q3. The extension to higher order of the eccentricity/argument of perigee

is believed to better characterize the short periodic oscillations.

3.7 Least Squares Fit to SGP4 and TLE Data

For this method, the point on the periodic orbit that corresponds to the epoch time of

SGP4 and TLE data should be calculated in terms of Q1 and Q2. From the perspective of

estimation theory, a reference trajectory should be corrected to yield an estimate of the ac-

tual trajectory. For this effort, the low eccentricity KAM torus predictions are considered as

the reference trajectory, and the SGP4 and TLE predictions are considered as the observa-

tional data. Wiesel and Frey showed that the KAM torus basis frequencies can be obtained

from SGP4 and TLE data. The desired periodic orbit is the one with zero y2 and y4 model

variables. The least squares routine for this effort fits the low KAM torus to the SGP4 and

TLE data by updating the global variables, Q1 and Q2, the frequencies, ω1 and ω2, and B∗.

The convergence criterion is met when the estimate correction vectors of modal variables,

79



Figure 21. The Converged and Unconverged State Correction Vectors

δyi, are smaller than 1% of the sigma values, σi. Convergence for least squares method

depends on the correction vectors and the error ellipsoid. If the correction vectors lie well

within the 1σ error ellipsoid [67]. Figure 21 represents the converged and unconverged

state correction vectors.

This effort uses nonlinear least squares. This method combines the SGP4 and TLE

data, which has been propagated for an orbit over two months, and the low eccentricity

KAM torus to form an estimate. For each observation, ti, a series of calculations are made

for nonlinear least squares method. First, the state transition matrix is obtained , Φ(ti, to),

by propagating the state vector to the observation time, ti. Second, the residual vector,

ri = zi−G(x), is calculated. The SGP4 and TLE data are represented as zi, and the low

KAM torus data are represented as G(x). Third, the observation matrix, Ti = HiΦ, the

covariance matrix, Pδx, and the state correction vector at epoch are calculated as [67]:

Ti = HiΦ

Pδx = (∑
i

T T
i Q−1

i Ti)
−1

δx(to) = Pδx∑
i

T T
i Q−1

i ri

(150)

where Qi is a matrix that has sigma errors associated with the measurements, Hi is obser-

vation function linearization matrix. Then, the reference trajectory is corrected as:

xre f+1(to) = xre f (to)+δx(to) (151)
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Table 10. Three Shortcomings of the Least Squares Method [11]

1 Although every observation has different accuracy for the
observations, each observation is weighted equally, which is
a problem when there is observation with poor accuracy be-
cause the least squares method will be biased towards them.

2 The errors can be correlated, not independent as least
squares method considers them to be.

3 The method soesn’t consider that the errors are samples
from a random process, and it doesn’t utilize any statisti-
cal information

Figure 22. The Visual Depiction of the Least Squares Method

Finally, the process ends when a desired limit for the convergence is met. However, there

are short comings of the least squares solution, which are listed in Table 10. In addition,

Figure 22 shows the visual depiction of least squares method. The least squares method

yields the the projection of the solution in the column space, where the solution is supposed

to exist. Therefore, in a sense, the least square method minimizes (A~x−~b)2, and yields the

closest approximate of the solution.

3.8 Summary

The geometry of the core of torus in the full geopotential appears to be a multiply-

periodic two dimensional ribbon structure as a function of the argument of latitude angle,

Q1, and the nodal angle, Q2, whereas it is a periodic orbit in the zonal potential. The orbital

eccentricity is a mode of oscillation, which has been expanded to the second order. For

the low eccentricity KAM torus theory, each satellite has a set of data files for the periodic
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orbit, the modal E matrix, and perturbation series in the form of Fourier series. The periodic

orbit has two large angles, Q1 and Q2,and four small parameters, y2, y4, y5, and y6. The

change in the two angles is quite large, but the small parameters are expected to be small all

the time. The theory includes two parts. The first part is a data package of Fourier series,

which need occasional update. The second part is a set of seven parameters, Q1, Q2, y2, y4,

y5, y6, and B∗, at epoch to which require more frequent update. Multiply-structured Fourier

series define the trajectory under modeled perturbations, and it is specialized to a particular

satellite because it is a numerical method. However, it takes less than a minute on a modern

personal home computer [69]. After the theory files are built and the SGP4 and TLE

propagation is obtained, the low KAM torus is fitted to the SGP4 and TLE data because

the point on the torus that matches the epoch time of SGP4 and TLE data must be found.

Moreover, the fitting process corrects the frequencies of the torus, ω1 and ω2, and it figures

out the B∗ value for the propagation period. It should be noted that the actual accuracy

that can be achieved by this theory is supposed to be far better with the raw observational

data than SGP4 and TLE data due to the inaccuracies in the SGP4 and TLE. The whole

process from the SGP4 and TLE propagation to the least squares fitting needs no human

intervention because all scripts are linked by bash files. The author modified every script

to be both compatible for WindowsTM, and GNU/Linux platforms. The computational part

of this effort has been conducted on a 64-bit GNU/Linux machine.
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IV. Results and Analysis

In this chapter, the results will be presented and discussed. 1500 TLEs were obtained

from www.space-track.com servers, and each were propagated for an orbit for 2 months.

Then, the low KAM torus theory files were created, which are associated with the periodic

orbit, sectoral and tesseral, eccentricity, and air drag perturbations. Finally, the low eccen-

tricity KAM torus was fitted to the SGP4 and TLE propagation data, and the residuals were

calculated. Therefore, the least squares fitting routine not only locates the epoch point on

the KAM torus and corrects the frequencies, but also yields residuals. The first section

presents the success rate for convergence between the low eccentricity KAM torus and the

SGP4 and TLE data, and provides details related to the root causes of failures. Each failure

was analyzed individually. The second section presents the relationship between orbital

characteristics and residuals for all 1500 test cases. Again, some plots for failed cases are

provided to figure out the root causes of the failures. The third section discusses and ana-

lyzes position and velocity residual plots for LEO and GEO objects in the RAN reference

frame, see Section 2.4. The fourth section describes the optimal mean orbital limitations

that never fail the convergence of the low eccentricity KAM torus. The fifth section com-

pares the low eccentricity KAM torus and the SGP4 predictions for the best fit and a mean

test case. The last section summarizes the chapter.

4.1 Overview of Results

All publicly available TLEs which have eccentricity on the order of 10−3 and smaller

were retrieved from the www.spacetrack.com servers. 1500 TLEs were pseudo-randomly

selected to fit the conditions mentioned in Section 3.1. First, each TLE was propagated for

an orbit for 2 months period of time. Next, the periodic orbit, and its linearization, which

is Floquet solution, for each test case was calculated, and perturbations were added to the
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Table 11. Rms Values for Least Squares Fitting of 1500 Test Cases

Rms range (Km) Percentage
0−0.5 0.6%
0.5−1 8.53333%
1−3 8.13333%
3−5 3.73333%
5−10 5.53333%
10−20 8.93333%
20−40 8.06667%
40−100 4.86667%
100−200 4.2%
> 200 4.26667%

solution. Then, the SGP4 and TLE data were fit using least squares, and the residuals for

each test case were calculated. The success rate for convergence is 56.8667%. Table 11

represents the percentage of different range of rms values for all 1500 test cases. It should

be noted that these percentages will increase if the propagation time period is smaller, be-

cause air drag is stochastic, and 2 months is long enough to terminate the torus. Therefore,

another analysis was conducted. One hundred failed test cases were pseudo-randomly se-

lected and propagated for 20 days instead of 2 months. The success rate of least squares

fitting over 20 days is 66%. Table 12 shows the rms values for the 100 previously failed test

cases. It is clear that the air drag is the root cause of the failure for 66 test cases. The other

34 test cases will be analyzed individually in order to find the root causes of the failure.

Table 13 represents the 34 failed test cases for the second time.

Iridium 68, NORAD id 25291, is an operational satellite. Therefore, maneuvers for

orbit maintenance, or attitude control maneuvers might cause the failure. Another reason

for the failure might be its relatively low height of semi-major axis and high B∗ values,

which are 7.1558000e+03 km and 2.0938000e−04, respectively. Iridium 68 was propa-

gated from 02-01-2013 to 02-09-2013 in order to check whether the air drag effect is the

reason for the failure. However, the fitting process yields residuals on the order of 107 for
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Table 12. Rms Values for Least Squares Fitting of the 100 Previously Failed Test Cases

Rms range (Km) Percentage
0−0.5 0%
0.5−1 3%
1−3 15%
3−5 5%
5−10 9%
10−20 3%
20−40 5%
40−100 4%
100−200 8%
> 200 14%

the second time, which is a typical error characteristic for polar inclination. Therefore, it

is concluded that its inclination of 8.6397400e+01◦ causes the failure. In addition, all the

Iridium satellites are in a Walker constellation, and they have nearly the same inclinations.

However, the author tested all other Iridium debris and satellites to confirm whether the

high inclination is the reason for the failure.

Iridium 33, NORAD id 35078, is a debris. Its inclination, semi-major axis, and B∗

values are very close to what Iridium 68, NORAD id 25291, has. Iridium 33, NORAD id

35078, was propagated from 03-01-2013 to 03-08-2013 in order to check whether the air

drag effect is the reason for the failure. However, the residuals are identical to the residuals

that Iridium 68 yielded during the fitting process. Therefore, it has been concluded that

its inclination of 8.6399100e+01◦ causes the failure. Moreover, there are 4 other Iridium

33 debris which have approximately the same inclinations. Thus, all Iridium 33 debris in

Table 13 fail due to their high inclinations.

Meteor 1-21, NORAD id 7714, is an operational weather satellite. Its period is 6.1373891e+

03 seconds, which is in the close vicinity of the 14:1 resonance. It was propagated from 09-

02-2013 to 09-08-2013. It yielded residuals on the order of hundreds of meters during the

fitting process although the convergence was accomplished. Because the fit was converged,
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Table 13. 34 Test Cases Failed for the Second Time

NORAD id Satellite Name Type Launch Date
25291 IRIDIUM 68 PAYLOAD 1998-04-07
35078 IRIDIUM 33 DEBRIS 1997-09-14
7714 METEOR 1-21 PAYLOAD 1975-04-01
29349 KOREASAT 5 PAYLOAD 2006-08-22
25531 IRIDIUM 83 PAYLOAD 1998-11-06
26599 BEIDOU 1 PAYLOAD 2000-10-30
34356 IRIDIUM 33 DEBRIS 1997-09-14
16495 COSMOS 1726 PAYLOAD 1986-01-17
33697 FENGYUN 1C DEBRIS 1999-05-10
9701 DELTA 1 DEBRIS 1973-11-06
21153 SL-8 R/B ROCKET BODY 1991-03-12
24115 PEGASUS DEBRIS 1994-05-19
23092 COSMOS 2279 PAYLOAD 1994-04-26
31039 FENGYUN 1C DEBRIS 1999-05-10
15308 GALAXY 3 PAYLOAD 1984-09-21
28923 FREGAT R/B ROCKET BODY 1991-03-12
31988 FENGYUN 1C DEBRIS 1999-05-10
34928 IRIDIUM 33 DEBRIS 1997-09-14
30760 FENGYUN 1C DEBRIS 1999-05-10
31561 FENGYUN 1C DEBRIS 1999-05-10
29830 FENGYUN 1C DEBRIS 1999-05-10
31339 FENGYUN 1C DEBRIS 1999-05-10
33605 FENGYUN 1C DEBRIS 1999-05-10
29921 FENGYUN 1C DEBRIS 1999-05-10
20061 NAVSTAR 14 PAYLOAD 1989-06-10
7560 SL-8 DEB DEBRIS 1972-08-16
36482 IRIDIUM 33 DEBRIS 1997-09-14
13073 COSMOS 1275 DEBRIS 1981-06-04
24435 EXPRESS 2 PAYLOAD 1996-09-26
21782 COSMOS 2168 PAYLOAD 1991-11-12
14966 SL-8 R/B ROCKET BODY 1984-05-11
35981 COSMOS 2251 DEBRIS 1993-06-16
34488 IRIDIUM 33 DEBRIS 1997-09-14
23404 COSMOS 2297 PAYLOAD 1994-11-24
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it was propagated for some random dates over 5 days in order to observe an improvement

in the residuals. However, the residuals appeared to be poor for all attempts. Its semi-major

axis and B∗ values can’t cause such poor fits. Therefore, it is concluded that the resonance

is the reason for the poor residuals. The KAM torus might deform rapidly near the resonant

orbits if not fail completely.

Koreasat 5, NORAD id 29349, is an operational satellite. It was propagated from 05-

01-2013 to 05-10-2013 and from 07-01-2013 to 07-08-2013 in order to check whether the

third body mass perturbations lead to the failure. Both propagations yielded the same big

residuals during the fitting process. Its period is 8.6165984e+04 seconds, and it is in the

close vicinity of the 1:1 resonance. Therefore, it is concluded that the resonance is the

reason for the failure.

Iridium 83, NORAD id 25531, is an operational satellite. It was propagated from 02-01-

2013 to 02-08-2013. The fitting process yielded characteristic polar inclination residuals,

which were on the order of 107 km. Therefore, it is concluded that high inclination, which

is 8.6396500e+01◦, is the reason for the failure.

Beidou 1, NORAD id 26599, is an operational satellite. It was propagated from 01-01-

2013 to 01-10-2013 and from 09-01-2013 to 09-10-2013. Both least squares fits yielded

big residuals, and the convergence failed for both attempts. The resonance might be the

reason for the failure because its period is 8.7352213e+04 seconds.

Cosmos 1726, NORAD id 16495, is an operational satellite. It was propagated from

01-01-2014 to 01-14-2014. It has an altitude of 527 km, and a B∗ value of 3.4805000e−04.

The orbit was successfully fitted to SGP4 and TLE with an rms value of 7.54832 km over

13 days. The poor fit shows that the atmospheric model used in the program, which is

based on the U.S. Standard Atmosphere, should be improved to predict satellites with low

altitudes with better accuracy. Figure 23 represents the plots for position and velocity

residuals. In the plot, along-track residuals are relatively bigger than the other components,
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Figure 23. The Residuals for Cosmos 1726 over 13 days

which proves that the air drag effect is the reason for the failure of the first attempt.

Fengyun 1C debris, NORAD id 33697, 31988, 30760, 31561, 31339, 33605, and

29921, are in the close vicinity of the 14:1 resonance. Each debris was propagated for

a short period of time in order to figure out whether the air drag effect is the reason for the

failure. None of the fits converged. Therefore, the reason for the failure is the 14:1 reso-

nance. Moreover, Fengyun 1C debris, NORAD id 31039, and 29830, prove this statement

because although two of them have lower height and higher B∗ value, both fits converged,

and the residuals weren’t bad for their low altitude. Fengyun 1C debris, NORAD id 29830,

yields an rms value of 9.47329 km, and NORAD id 31039 yields an rms value of 22.8057

km. Figure 24 represents the plot for position and velocity residuals of Fengyun 1C de-

bris, NORAD id 29830, and Figure 25 shows the plot for position and velocity residuals of

Fengyun 1C debris, NORAD id 31039. In the plots, the quadratic characteristic of air drag

effect can be easily seen.

Delta 1 debris, NORAD id 9701, has relatively high B∗ value, which is 1.2101000e−
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Figure 24. The Residuals for Fengyun 1C, NORAD id 29830, over 6 Days
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Figure 25. The Residuals for Fengyun 1C, NORAD id 31039, over 6 Days
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02, and it is also in the close vicinity of the 13:1 resonance. It was propagated from 01-

01-2014 to 01-09-2014. The least squares fit converged with an rms value of 94 km over 8

days.Therefore, the air drag effect is believed to be the prime reason for the failure.

SL-8 R/B, NORAD id 21153, is a rocket body. It has an inclination of 8.2926500e+

01◦, a semi-major axis of 7.3573300e+03 km, a B∗ value of 1.3800000e−04, and a period

of 6.2804555e+03 seconds. It was propagated from 01-02-2014 to 01-08-2014. The least

squares fitting process converged with an rms value of 47.0068 km. Thus, the air drag is

the reason for the failure. Figure 26 represents the plot for position and velocity residuals.
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Figure 26. The Residuals for SL-8 R/B, NORAD id 21153, over 10 Days

Pegasus, NORAD id 24115, is a debris. Its relatively low altitude, which is 512.275

km, and relatively high B∗ value, which is 6.3281000e−04, are responsible for the failure

because the least squares fit converged when it was propagated from 01-02-2014 to 01-09-

2014 over 8 days. Figure 27 represents the plot for position and velocity residuals.

Cosmos 2279, NORAD id 23092, is an operational satellite. It was propagated from
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Figure 27. The Residuals for Pegasus, NORAD id 24115, over 9 Days

01-01-2014 to 01-19-2014. The least squares fit converged with an rms value of 13.8748

km over 18 days. Therefore, it is clear that the least squares fit has failed to converge due

to the air drag effect. Figure 28 represents the plot for position and velocity residuals.

Galaxy 3, NORAD id 15308, is an operational satellite with a period of 24.03. The

propagation from 01-01-2014 to 01-10-2014 yielded an rms value of 1.94622 km. There-

fore, the inaccuracies in the TLEs caused the failure.

Fregat R/B, NORAD id 28923, is a rocket body. It has an inclination of 5.6419100e+

01◦, a semi-major axis of 2.9813700e+04 km, and a period of 5.1231209e+04 seconds.

It was propagated for different time periods, and all attempts yielded characteristic rms

values for resonant orbits, which were approximately on the order of 106, and the residuals

were random-like. Therefore, it is concluded that the resonance is the reason for the failure.

Navstar 14, NORAD id 20061, is an operational satellite. It has an inclination of

5.5107800e+01◦, a semi-major axis of 2.7647000e+04 km, and a period of 4.5749126e+

04 seconds. It was propagated from 01-01-2014 to 01-10-2014. The least squares fitting
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Figure 28. The Residuals for Cosmos 2279, NORAD id 23092, over 18 Days

process yielded random big rms values for iterations, which were on the order of 10−6.

Therefore, it is concluded that the resonance is the reason for the failure.

SL-8 debris, NORAD id 7560, has a period of 6.1487649e+03 seconds. Thus, it is in

the close vicinity of the 14:1 resonance. It was propagated from 01-01-2014 to 01-10-2014.

The least squares fit failed to converge, and yielded random big rms values for iterations,

which is typical residuals for orbits in the close vicinity of the resonance.

Cosmos 1275, NORAD id 13073, is a debris. It was propagated from 01-02-2014 to 01-

09-2014. The convergence was accomplished with an rms value of 3.39862 km. Therefore,

the reason for the failure is the air drag effect. Figure 29 represents the plots for position

and velocity residuals over 7 days.

Express 2, NORAD id 24435, is an operational satellite. It has an inclination of

1.2856800e+01◦, a semi-major axis of 4.2182300e+04 km, and a period of 8.6219633e+

04 seconds. It is in the close vicinity of the 1:1 resonance. Express 2 was propagated from

01-03-2014 to 01-08-2014 over 5 days. It yielded random big rms values during the least
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Figure 29. The Residuals for Cosmos 1275, NORAD id 13073, over 7 Days

squares fitting process, and it failed to converge. Therefore, the resonance is the reason for

the failure not the third body mass perturbations.

Cosmos 2168, NORAD id 21782, is an operational satellite. It has an inclination of

8.2598100e+01◦, a semi-major axis of 7.7788100e+03 km, a B∗ value of 2.4820000e−

04, and a period of 6.8277959e+ 03 seconds. It was propagated from 01-02-2014 to 01-

09-2014 over 7 days. The least squares fit converged with an rms value of 2.11935 km.

Therefore, it is concluded that the reason for the failure is the air drag effect. Figure 30

represents the plots for position and velocity residuals over 7 days.

SL-8 R/B, NORAD id 14966, has an inclination of 8.2972500e+01◦, a semi-major axis

of 7.3620200e+03 km, a B∗ value of 1.9141000e−04, and a period of 6.2864617e+ 03

seconds. It was propagated from 01-01-2014 to 01-09-2014 over 9 days. The least squares

fit converged with an rms value of 13.9352 km. Therefore, the air drag effect is the reason

for the failure.

Cosmos 2251, NORAD id 35981, has an inclination of 7.4059500e+01◦, a semi-major
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Figure 30. The Residuals for Cosmos 2168, NORAD id 21782, over 9 Days

axis of 6.9195900e+03 km, a B∗ value of 2.9060000e−03, and a period of 5.7283735e+

03 seconds. It was propagated from 01-01-2013 to 01-14-2013 over 13 days. The least

squares fit converged with an rms value of 86.645 km, which isn’t surprising because of its

low altitude and high B∗ value. Therefore, the air drag effect is the reason for the failure.

Figure 31 represents the plots for position and velocity residuals over 15 days.

Cosmos 2297, NORAD id 23404, is in the close vicinity of the 14:1 resonance. It has

an inclination of 7.1013200e+01◦, a semi-major axis of 7.2261100e+03 km, a B∗ value

of 2.4820000e− 04, and a period of 6.1131864e+ 03 seconds. It was propagated from

01-01-2014 to 01-15-2014, 01-09-2014, and 01-07-2014 for three different time periods.

All attempts failed because of the resonance.

In conclusion, 1500 test cases, which fit the conditions mentioned in Section 3.1, were

propagated using the low eccentricity KAM torus method. Then, each KAM torus propa-

gation data was fitted to SGP4 and TLE prediction data associated with each test case over

2 months. Initial success rate for convergence is 56.8667%. Then, 100 new test cases were
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Figure 31. The Residuals for Cosmos 2251, NORAD id 35981, over 15 Days

selected from the failed test cases, and the same process was applied to 100 new test cases.

The success rate of least squares fitting over 20 days instead of 2 months for the new test

cases is 66%. Next, 34 failed test cases, which failed to converge for the second time, were

individually analyzed. Seven test cases failed for the third time because their inclinations

are in the close vicinity of polar inclination. An inclination of 86◦ caused the construction

of the KAM torus to fail. The unstable forms of the Legendre polynomial recursions for

the calculation of geopotential caused the high eccentricity problem. The solution is left

for future studies. One test case failed to converge to the SGP4 and TLE data because of

the inaccuracies in the TLEs. Ten test cases failed due to the air drag effect. Test cases with

relatively high B∗ value and low altitude can only be propagated for short period of time

because of effective air drag. Sixteen test cases failed to converge due to the resonance.

There is no KAM torus near the resonance. Therefore, a clever approach should be taken

to deal with the resonance, which is important for the generalization of the theory to all

orbits. In addition, critical and polar inclination problems should also be addressed for the
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generalization of the theory.

4.2 Orbital Characteristics and Residuals

The relationship between some orbital characteristics, such as semi-major axis, eccen-

tricity, inclination, B∗ value, and period, and rms values yield valuable information about

the theory. Because many factors degrade the accuracy and the dimensions that can be

used to present the data are restricted to 3, straightforward presentation of data isn’t useful.

Therefore, success ratio, which is successful attempts over the sum of the successful and

failed attempts, for fixed time intervals versus orbital characteristics are used for the plots.

The time intervals vary based on the orbital characteristics. However, there are 30 time

intervals for all orbital characteristics. Each success ratio is an average value for a time in-

terval, which is attributed to the starting point of the interval. This is important information

for evaluating the plots including resonance data because the effects of the resonance don’t

seem to be aligned. Therefore, additional explanations are provided for the plots. The data

obtained from 1500 test cases were used for all plots in Section 4.1.

The success ratio versus semi-major axis was plotted for LEO and GEO satellites be-

cause there were few test cases at the MEO altitudes. For LEO satellites, the prime pertur-

bation that degrades the accuracy for the theory is the air drag. The other parameter that

degrades the accuracy for LEO satellites is the resonance. For GEO satellites, the prime

perturbation is the third body mass. The other parameter that degrades the accuracy for

GEO satellites is the 1:1 resonance.

Figure 32 represents the success ratio versus semi-major axis for the test cases which

have semi-major axes of 8000 km and smaller. The resonance points from left to right are

the 29:2, 14:1, 27:2, 13:1, 37:3, and 12:1 resonances. Although 29:2 and 37:3 resonances

do seem to be aligned with the decrease in the success ratio, the success ratio is an average

over a time interval attributed to the starting point of the interval. For the 29:2 resonance
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case, the success ratio average is from 7050 km to 7100 km, and the altitude, which is

calculated from the center of Earth, for the 29:2 resonance is 7090.846 km for orbits with

zero eccentricities. For the 37:3 resonance case, the success ratio average is from 7850

km to 7900 km, and the altitude, which is calculated from the center of Earth, for the 37:3

resonance is 7898.714 km for orbits with zero eccentricities. In addition, the 13:1 resonance

doesn’t degrade the accuracy to zero for the interval between 7600 km and 7700 km. There

are missing data for the interval between 7600 km and 7650 km. However, the resonance

certainly degrades the accuracy. The success ratio increases with increasing altitude, which

isn’t surprising, because air drag perturbation is more effective at low altitudes.
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Figure 32. The Success Ratio versus Semi-Major Axis for LEO Objects over 2 Months

The plot for the success ratio of GEO objects is surprising at the first glimpse because

there are unexpected failures. Further examination yielded that three test cases created

these failures. The author propagated these three test cases, which are Ius R/B, NORAD

id 22316, Tvsat 2, NORAD id 20168, and familiar Galaxy 3, NORAD id 15308, from

01-01-2014 to 03-01-2014. They converged with rms values of 13.3379 km, 10.1593 km,
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and 14.4785 km, respectively, which proves that many failures can be related to the inac-

curacies in TLEs, but this effort ignores this fact. Figure 33 represents the success ratio for

test cases which have a semi-major axis between 42100 km and 42500 km before and after

corrections are applied. The accuracy decreases rapidly after 42316 km. The convergence

totally vanishes, or the accuracy becomes extremely low if the convergence is accomplished

for 42416 km and bigger semi-major axis values due to the third body mass perturbations.

The 1:1 resonance certainly degrades the accuracy. In addition, active payloads in geosyn-

chronous orbit are maneuvered frequently to suppress the action of the resonance.
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Figure 33. The Success Ratio versus Semi-Major Axis for GEO Objects

Figure 34 represents the success ratio versus eccentricity for the test cases which have

eccentricities between 0 and 0.01. In the plot, from 0 to 0.004 the accuracy is pretty lev-

eled, except some ups and downs due to other orbital characteristics. However, after the

threshold of 0.004 eccentricity is passed the success ratio decreases to approximately 30%.

This proves how eccentricity is an important factor in terms of accuracy for the theory.

Moreover, another analysis in Section 4.4 will examine the upper limit for the eccentricity
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that can be modeled by the theory.
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Figure 34. The Success Ratio versus Eccentricity over 2 Months

Figure 35 represents the success ratio versus B∗ for the test cases which have B∗ values

between 0 and 0.01. In the plot, when the B∗ value of 0.003 is passed the success ratio

for convergence decreases to approximately zero. The sharp decrease with increasing B∗

value shows the importance of the value for the theory. As mentioned previously, the B∗

value defines the susceptibility of near-Earth objects to air drag. The more effective the

air drag is on a near-Earth object, the less accurate low eccentricity KAM torus theory

becomes. The drastic effect of the B∗ value on the theory necessitates either an improved

atmospheric model or the shorter propagation time interval. However, the first option may

not introduce enough improvement in the accuracy due to the stochastic nature of air drag.

One thousand five hundred test cases were pseudo-randomly selected under the conditions

mentioned in details in Section 3.1, which include the close vicinity of polar and critical

inclination, and eccentricity on the order of 10−3 and smaller. Figure 36 represents the

success ratio versus inclination in order to check whether there are other inclination values
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Figure 35. The Success Ratio versus Bstar over 2 Months
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Figure 36. The Success Ratio versus Inclination over 2 Months
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that lead to the resonance. In the plot, the inclinations of 20◦ and 80◦ seem to decrease the

accuracy drastically, but this is an unexpected situation. Further examination yielded that

three test cases for inclinations between 20◦ and 25◦, two test cases for inclinations between

25◦ and 30◦, and three test cases for inclinations between 75◦ and 80◦ have created these

failures. For inclinations 20◦-25◦, Delta 2 rocket body, NORAD id 21931, Pegasus rocket

body, NORAD id 22491, and Scd 2, NORAD id 25504, have caused the failures. They all

have low altitudes. Delta 2 R/B was propagated from 01-01-2013 to 01-10-2013, and the

other two were propagated from 01-01-2014 to 01-10-2014. They converged to the SGP4

and TLE data with rms values of 15.2938 km, 0.3447 km, and 0.2793 km, respectively.

For inclinations 25◦-30◦, Tansei 1, NORAD id 4952, Delta 1 debris, NORAD id 10309,

and Galex, NORAD id 27783, caused the failures. Delta 1 and Galex have low altitudes.

Two of them were propagated from 01-01-2014 to 01-10-2014 with rms values of 269.943

km, 0.2481 km, respectively. Although Delta 1 successfully converged, its semi-major

axis, which is 6849.32, caused a big residual. Tansei 1 was also propagated from from

01-01-2014 to 01-10-2014 in order to check whether attitude control, or station keeping

maneuvers caused the failure. It was converged with an rms value of 0.5388 km. For

inclinations 75◦-80◦, Scout X-4, NORAD id 871, and SL-21 rocket body, NORAD id

29159, caused the failures. Two of them were propagated from 01-01-2014 to 01-10-2014

with rms values of 0.9033 km, and 24.7307 km, respectively. Therefore, the polar and

the critical inclinations are the only ones that fail the converge and degrade accuracy. The

success ratio is quite leveled if the corrections are applied. Thus, there is no linear relation

between the success ratio and the inclination. Moreover, another analysis in Section 4.4

will examine the limits for the polar and critical inclinations that can be modeled by the

theory.

Figure 37 represents the success ratio versus the period for the test cases which have

periods between 6000 seconds and 7160 seconds. The resonance points from left to right
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are the 14:1, 13:1, and 12:1. The other order resonances, such as 27:2 and 37:3, can’t be

detected in the plot. The two drastic decreases between 6400 seconds and 6600 seconds are

due to the small number of test cases which all except one have high B∗ values. One of them

failed to converge due to the inaccurate TLEs. For periods between 6440 seconds and 6480

seconds, Delta 1 rocket body, NORAD id 21602, and Nimbus 2 debris, NORAD id 31579,

reduced the accuracy. For periods between 6520 seconds and 6560 seconds, Cosmos 770,

NORAD id 8325, which has a B∗ value of 2.845× 10−3, Meteor 3-2, NORAD is 19336,

which has a B∗ value of 1.1514×10−3, Cosmos 1275 debris, NORAD id 14440, which has

a B∗ value of 1.4665×10−2, and SL-8 rocket body, NORAD id 11170, which failed due to

the inaccurate TLEs because propagation from 01-01-2002 to 03-01-2002 yielded 16.7697

km residual. Because there are few test cases between 6400 seconds and 6600 seconds, the

resonance effect can’t be detected during this time period. Therefore, if the propagation

time is decreased, the success ratio between 6400 seconds and 6600 seconds has a very

similar trend as the success ratio between 6200 seconds and 6400 seconds, that is a linear

increase with smaller variations.

In conclusion, the resonance has emerged as a problem again in the broader picture.

This section presents the analysis for 1500 test cases. For LEO objects, air drag degrades

the success ratio of the least squares fit over 2 months to zero for altitudes below 422

km. The accuracy also increases with increasing altitude. For GEO satellites, third body

mass perturbation degrades the success ratio of the fit to zero for altitudes above 36038

km. The only resonance that effects the accuracy is the 1:1 resonance for altitudes between

35622 km and 36122 km. The eccentricity has appeared as an important parameter that

degrades the accuracy. A sharp decrease in the accuracy occurs for eccentricities bigger

than 0.004. The B∗ value has drastically decreased the accuracy of the theory. Moreover,

all 16 test cases between the interval 0.0030 and 0.0033 have failed to converge. Therefore,

the upper limit for B∗ for the theory can be defined as 0.003. However, the success rate for
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Figure 37. The Success Ratio versus Period over 2 Months

B∗ values between 0 and 0.001 can be easily enhanced by an improved atmospheric model.

For the current theory, 217 out of 725 test cases have failed for the B∗ values between 0

and 0.00033. The polar inclination and the critical inclination were proved to be the only

problem that terminates the convergence of the least squares fit. Thus, there are no other

inclination values that lead to failure of the convergence of the least squares fit. Moreover,

there is no linear relation between the success ratio and the inclination. The success ratio

based on the period is unsurprisingly very similar to the success ratio based on the altitude.

There is a linear relation between the period and the success ratio of the convergence of the

least squares fit.

4.3 Some Samples from the Results

The general performance of the theory has been presented so far. This section intro-

duces some characteristic examples of the least squares fits for the LEO and GEO objects.

Every test case has a plot that represents the accuracy of the low eccentricity KAM torus
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theory assuming that SGP4 and TLE data are raw observational data. The reference frame

for the plots is RAN frame of reference, see Section 2.4. However, this isn’t a fair evalu-

ation of the accuracy of the theory because the basis frequencies and B∗ are continuously

updated using SGP4 and TLE data. Section 4.5 introduces a fair comparison between

SGP4 and the low eccentricity KAM torus method in terms of accuracy. Therefore, the

plots introduced in this section present whether the numerically built torus can be fitted to

observational data. If the torus is fitted to the observational data with high accuracy, the

result is a compact numerical set of algorithms that are as accurate as numerical methods

and as fast as general perturbation techniques, in terms of computational time.
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Figure 38. The Residuals for Thorad Delta 1 Debris, NORAD id 8168, over 2 Months

Figure 38 and Figure 39 represent the best 2 least squares fits for LEO objects. They

are Thorad Delta 1 debris, NORAD is 8168, and Thorad Delta 1 debris, NORAD is 8140.

The least squares fitting process yielded 3.6864262e− 01 km and 4.2330236e− 01 km,

respectively. Although both of them have similar orbital characteristics, the difference

in the accuracy is due to the B∗ values, which are 8.2174000e− 05 and 9.3318000e−
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Figure 39. The Residuals for Thorad Delta 1 Debris, NORAD id 8140, over 2 Months

05, respectively. It should be also noted that Thorad Delta 1 debris, NORAD is 8140, is

approximately at an altitude 25 km higher than Thorad Delta 1 debris, NORAD is 8168.

Both plots present the bounded oscillatory behavior of the residuals over 2 months. They

both have an altitude slightly above 1450 km. Thus, air drag isn’t that effective, and the

quadratic structure of air drag usually appeared on along-track and radial components can’t

be detected in the plots.

Ops 6630 debris, NORAD id 9323, Cosmos 2251 debris, NORAD id 35469, and Tho-

rad Agena D debris, NORAD id 4214, have least squares fits with residuals on the order

of kilometers due to different reasons. Figure 40 represents the position and the velocity

residuals of Ops 6630 debris for the least squares fit. Ops 6630 debris, NORAD id 9323,

has an inclination of 9.7031200e+ 01, a semi-major axis of 7.8056200e+ 03, a B∗ value

of 2.5971000e−04, and a period of 6.8631247e+03 seconds. Its relatively high B∗ value

leads to a residual of 5.02942 km over 2 months. However, the familiar quadratic structure

of air drag that appears on the along-track and the radial components can’t be detected in
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Figure 40. The Residuals for Ops 6630 Debris, NORAD id 9323, over 2 Months

the plot because its B∗ value doesn’t exceed the limit that can be handled by the theory.

However, Figure 41 represents the quadratic air drag effect on the least squares fit of Tho-

rad Agena D debris. The along-track and the radial components seem to diverge from the

desired oscillatory behavior of the residuals. Another factor that degrades the accuracy is

the inaccuracies in the TLEs. Figure 42 represents the residuals of Cosmos 2251 debris for

the least squares fit. In the plot, one of the TLEs is certainly inaccurate.

GEO satellites don’t yield neat oscillatory behavior for the residuals because the third

body mass perturbations aren’t added to the theory yet. However, third body mass pertur-

bations can be calculated like air drag perturbations, see Section 3.5. There will be at least

one additional angle in the Fourier series to specify the motion of the Sun or the Moon.

Three example test cases were chosen to present the characteristic fits for GEO satellites.

Two of them have the best fits for GEO. The other one is one of the poorest fits. The poor

fit proves the behavior of the residuals when the altitude of the satellite approaches to the

threshold of 36000 km. Figure 43 represents the position and the velocity residuals of Ops
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Figure 41. The Residuals for Thorad Agena D Debris, NORAD id 4214, over 2 Months
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Figure 42. The Residuals for Cosmos 2251 Debris, NORAD id 35469, over 2 Months
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Figure 43. The Residuals for Ops 9443 payload, NORAD id 11621, over 2 Months

9443 payload, NORAD id 11621, for the least squares fit. The least squares fit for Ops

9443 payload was converged with an rms value of 8.4179 km. Although this fit is one of

the best fits for GEO satellites, its accuracy is far worse than the best fit for LEO objects

because objects at high altitudes change their orbits towards the ecliptic plane of the solar

system. Therefore, the third body mass perturbations should be added to the theory for bet-

ter accuracy for GEO satellites. Figure 44 represents the position and the velocity residuals

of Ops 9438 payload, NORAD id 10001, for the least squares fit. There are irregular pat-

terns in the plot. However, third body mass perturbations are not the only source of error.

Both station keeping maneuvers and inaccurate TLEs can cause these irregular residuals as

well. Intelsat 4-F3 payload, NORAD id 5709, yielded one of the poorest fits. Intelsat 4-F3

payload has a semi-major axis of 4.2349300e+ 04 km and a period of 8.6732156e+ 04

seconds. It isn’t in the close vicinity of the 1:1 resonance. Thus, third body mass pertur-

bations is the root cause of the poor fit. Figure 45 represents the position and the velocity

residuals of Intelsat 4-F3 payload for the least squares fit. The propagation of Intelsat 4-F3
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payload from 01-01-2013 to 03-01-2013 yielded an rms value of 923.06 km.
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Figure 44. The Residuals for Ops 9438 payload, NORAD id 10001, over 2 Months

4.4 Further Analysis for Orbital Characteristics

The low eccentricity KAM theory is known to fail in the close vicinity of the polar and

the critical inclinations and eccentricities above 10−3. However, there is no experimental

proof for the limits of the theory in terms of inclination and eccentricity. This section

rigorously investigates those limits. For this section, 890 new test cases, which have an

eccentricity of 10−3 and smaller, for polar inclination, 432 new test cases, which have an

eccentricity of 10−3 and smaller, for the critical inclination, and 160 new test cases for

eccentricity were retrieved from www.space-track.com servers, and propagated from 01-

01-2014 to 03-01-2014. Another approach has been taken for the pseudo-random selection

of the new test cases. For each case, the interval of interest was divided into 4 equal pieces.

Equal number of random test cases were selected for each interval.
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Figure 45. The Residuals for Intelsat 4-F3 payload, NORAD id 5709, over 2 Months

Figure 46 represents the success ratio versus the eccentricity. The range for the eccen-

tricity is between 0.01 and 0.05. This plot shows the upper limit of the eccentricity that can

be modeled by the theory. The drastic decrease in the success ratio can be seen in the plot.

The least squares fit clearly fails for the eccentricities of 0.0233 and bigger. The decrease

in the success ratio for the eccentricity from 0 to 0.01 is 25%, see Section 4.2. However,

the decrease in the success ratio for the eccentricity from 0.01 to 0.014 is approximately

45%.

Figure 47 represents the success ratio versus the inclination, which is in the close vicin-

ity of the polar inclination. From 84◦ to 96◦ all 311 test cases have failed to converge.

Therefore, the close vicinity of the polar inclination certainly terminates the fitting process

completely. The current theory can’t model orbits which have inclinations between 84◦

and 96◦. As mentioned previously, the solution to this problem is known, but it is left to

future studies. This work is specifically beneficial for collision avoidance calculations and

formation flight applications.
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Figure 46. The Upper Limit of the Eccentricity for the Theory
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Figure 47. The Optimal Region in the Close Vicinity of Polar Inclination

111



 0

 0.2

 0.4

 0.6

 0.8

 1

 60  61  62  63  64  65  66

S
u

c
c

e
s

s
 R

a
ti

o

Inclination (Degrees)

Success Ratio for Critical Inclination

Success Ratio 

Figure 48. The Optimal Region in the Close Vicinity of Critical Inclination
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Figure 49. The Success Ratio versus Period (13:1 Resonance)
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Figure 48 represents the success ratio versus the inclination, which is in the close vicin-

ity of the critical inclination. The interval between 64.5◦ and 59.5◦ is where the success

ratio becomes zero. Thus, the optimal region is the interval between 65.5◦ and 58◦. Al-

though it is hard to define the starting point of the optimal region due to the missing points,

the upper limit is definitely 64.5◦.

The author also analyzed the 13:1 resonance. 156 tests cases failed between 6570 sec-

onds and 6700 seconds. Delta 1 debris, NORAD id 6213, Jason debris, NORAD id 35414,

and Cosmos 1691, NORAD id 35414, were the only survivors in the close vicinity of the

13:1 resonance. Figure 49 represents the success ratio versus the period. This analysis

provides valuable information for the behavior of the new theory near resonance.

4.5 Comparison between KAM Torus Method and SGP4

The least squares fitting process of the low eccentricity KAM torus to the SGP4 and

TLE data requires continuous differential corrections of B∗ value, basis frequencies, and

the the global variables. The author has written additional scripts to compare the new

method to SGP4. First, a low KAM torus is built, and then, least squares is fitted to SGP4

and TLE data over two months. Theory files, which are used to build the torus, and the

basis frequencies are stored. Then, TLE of a future date, which is two months later than

the starting date of the propagation, is propagated for an orbit by SGP4. This propagation

is assumed to be the truth. Next, both the low eccentricity KAM torus and SGP4 are

propagated over two months and residuals are calculated. The same process is repeated for

the second time for other TLEs.

Figure 50 represents the residuals over one period for the new theory. Figure 51 rep-

resents the residuals over one period for SGP4. This comparison is made for the best

least squares fitted near-Earth object, which has an rms value of 0.377006 km over two

months. This test case is Thorad Delta 1 debris, NORAD id 8168. It has an inclination of
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Figure 50. The Low Eccentricity KAM Torus Prediction over 2 Months for the Best Fit Case
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Figure 51. SGP4 prediction over 2 Months for the Best Fit Case
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1.01334e+ 02◦, a semi-major axis of 7.83195e+ 03 km, and B∗ value of 8.21740e− 05.

The new theory yields approximately five times more accurate predictions than SGP4 does.

The theory files for this comparison was created from 01-01-2013 to 03-01-2013. The date

for the truth TLE is 05-01-2013.
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Figure 52. The Low Eccentricity KAM Torus Prediction over 2 Months for a Mean Case

Figure 52 represents the residuals over one period for the new theory. Figure 53 repre-

sents the residuals over one period for SGP4. This comparison is made for an average least

squares fit, which has an rms value of 5.0332 km over two months. This test case is Ops

6630 debris, NORAD id 9323. It has an inclination of 9.7031200e+ 01◦, a semi-major

axis of 7.8056200e+ 03 km, and B∗ value of 2.5971000e− 04. The new theory yields

approximately three times more accurate predictions than SGP4 does. The theory files for

this comparison was created from 01-01-2013 to 03-01-2013. The date for the truth TLE

is 05-01-2013.

The author also propagated the best fit case, NORAD id 8168, from 03-01-2013 to 05-

01-2013 with approximately two days intervals. The result is very promising because there
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Figure 53. SGP4 prediction over 2 Months for a Mean Case
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is a linear error growth for one month with a small slope. Then, the error growth nearly

doubles between 30 to 60 days. Figure 54 represents the residual growth versus period.

The inaccuracies in SGP4 and TLE is also uncovered by Figure 54.
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V. Conclusions and Recommendations

This chapter presents the conclusions and the recommendations for future studies. The

first section introduces the conclusions obtained from chapter 4. The limitations and appli-

cability of the new theory is presented. For the second section, recommendations for future

studies are given.

5.1 Conclusions

Although the title for this effort is “KAM Torus Orbit Prediction using SGP4 and TLE”,

it has yielded more than only the possibility of orbit prediction combining the observational

data and the theory. The new theory has proven to be a better substitute for SGP4. Its

numerical set of algorithms provide higher accuracy and increase computational speed.

The theory can be implemented in less than a minute on a home computer. The new theory

has binary files associated with parameters, such as the periodic orbit, the geopotential and

air drag perturbations, and second-order eccentricity perturbation. The new theory contains

two parts. First, a data package which includes Fourier series. Second, a set of seven values,

Q1, Q2, y2, y3, y4, y5, y6, and B∗ at an epoch to. Therefore, the new theory seems to be an

alternate way to compress ephemerides.

The low eccentricity KAM method appears to be promising for collision avoidance

calculations because it yields accurate predictions. The linear residual growth of the new

theory for short time intervals proves its applicability to collision avoidance calculations.

Although it is hard to make a precise accuracy analysis without raw observational data, the

error growth plot, see Section 4.5, proves that the low eccentricity KAM torus theory may

rival numerical methods in terms of accuracy. In addition, the new theory can yield far

better residuals with two simple modifications. First, the relatively inaccurate TLEs can be

eliminated from the fitting process, see Figure 54. Second, the linear correction behavior
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for the frequencies during the fitting process can be projected forward. Moreover, the new

theory can reduce the dependence on NORAD. Because most ground stations depend on

NORAD TLE, they must wait NORAD to publish the TLE. However, debris and most

satellites can be propagated forward in time using TLE history with high accuracy using

KAM torus theory. Formation flight is another possible application for the low eccentricity

KAM torus theory. Since the accuracy of the theory increases for short time periods, the

new method can be an onboard collision avoidance algorithm given that the satellite can

receive position data.

5.2 Future Studies

There are some issues related to the new theory. As presented throughout chapter 4,

resonance, high eccentricity, polar inclination, and critical inclination issues should be ad-

dressed. This effort provides an extensive analysis of the new theory. The generalization

of the theory to all orbits can be possible after these issues are solved. However, this effort

can be used as future reference before applying theory on different debris and satellites.

The solution to the the polar inclination problem is already known. The problem emerges

due to the forms of the Legendre polynomial recursions which becomes numerically un-

stable. The solution to this problem is provided in Wiesel’s text [64]. The atmospheric

model should be improved. Russian GOST Atmosphere is a promising candidate because

it requires less computation time and it is relatively accurate. It is built by empirical data

obtained from Cosmos satellites. It includes solar flux and geomagnetic activity effects

[60]. The application of the theory to orbits with high eccentricity and critical inclina-

tion is an area of current interest. In addition, the actual accuracy analysis requires raw

observational data, because SGP4 and TLE has intrinsic inaccuracies.
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A new method for orbit prediction, which is as accurate as numerical methods and as fast as analytical methods, in terms of
computational time, is desirable. This paper presents Kolmogorov Arnol’d Moser (KAM) torus orbit prediction using Simplified
General Perturbations 4 (SGP4) and Two-Line Element (TLE) data. First, a periodic orbit and its Floquet solution is calculated. After
that, perturbations, which are on the order of 10−5 and smaller, are added to the periodic orbit plus Floquet solution. Then, the low
eccentricity KAM torus is least squares fitted to the SGP4 and TLE data. The performance of the theory is presented in various ways.
The new method is approximately five times more accurate for the best fits and three times more accurate for mean fits comparing to
SGP4 and TLE. History of TLEs and KAM torus theory can be used to make accurate orbit predictions, which is conceptually
similar to extrapolation. In addition, the new method may rival numerical methods and it can be used for collision avoidance
calculations, and formation flight applications. However, high eccentricity, polar and critical inclination, air drag, and resonance
problems should be addressed.
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